

Agilent 89410A Vector Signal Analyzer dc to 10 MHz

Data Sheet

Introduction

Specifications describe warranted performance over the temperature range of 0° to 45 °C (except where noted) and include a 30-minute warm-up from ambient conditions, automatic calibrations enabled, auto-zero on, time domain calibration off, and anti-alias filter in, unless noted otherwise. Supplemental characteristics identified as "typical" or "characteristic," provide useful information by giving non-warranted performance parameters. Typical performance is applicable from 20° to 30°C. When enabled, automatic calibrations are periodically performed to compensate for the effects of temperature and time sensitivities. During the calibration, no signals > 0 dBm should be connected to the front panel inputs.

Definitions

Analog demodulation mode = Measurements with AM, PM, and FM demodulation capabilities.

Baseband time = Time-domain measurements selected by setting start frequency to exactly 0 Hz or choosing full span in 0 to 10 MHz measurements.

dBc = dB relative to input signal level.

dBfs = dB relative to full scale amplitude range setting. Full scale is approximately 5 dB below ADC overload.

FS or fs = Full scale; synonymous with amplitude range or input range.

RBW = Resolution bandwidth.

Scalar mode = Measurements with only frequencydomain analysis available. Frequency spans up to 10 MHz.

SNR = Signal to noise ratio.

Vector mode = Measurements with frequency- and timedomain capabilities. Frequency spans up to 10 MHz.

Zoom time = Time-domain measurements selected by setting frequency parameters using center frequency and span values.

Feature summary

Frequency

dc to 10 MHz 51 to 3,201 points Center frequency signal-tracking

Instrument modes Scalar (frequency domain only) Vector (amplitude and phase information in frequency and time domain and also time gating) Analog demodulation (AM/FM/PM)

Manual

External

External arm

and level

Peak hold

spectrum

Periodic chirp

Programmable polarity

Simultaneous display of

instantaneous and average

Arbitrary (up to 8,192 points)

Pre and post delay

Sweep types

Continuous Single

Triggering

Free run Input channel IF channel Internal source GPIB

Averaging

Video Video exponential Time Time exponential

Source types

CW Random noise

Input

One channel Second 10 MHz input channel (optional) Auto-ranging Overload indicators $50/75/1M \Omega$ BNC **Resolution/window shapes**

1-3-10 bandwidth steps Arbitrary RBW Windows: Flat-top (high amplitude accuracy), Gaussian-top (high dynamic range), Hanning (high frequency resolution), uniform Detectors: normal, positive peak, sample

Measurement data

Spectrum PSD Main time Gate time Math function Data register Auto correlation

Time capture Frequency response, coherence, cross spectrum, and cross correlation (with second 10 MHz input channel) Instantaneous spectrum

Imaginary part

Log/linear x-axis

Group delay

Data format

Log magnitude Linear magnitude Phase (wrap or unwrap) Real part **Online help**

Trace math

Display

1, 2, or 4 grids 1 to 4 traces displayed (single or overlay) Auto-scaling Color (user definable) User trace title and information

Graticule on/off Data label blanking X-axis scaling Instrument/measurement state displays External monitor Markers Marker search: Peak, next peak, next peak right, next peak left, minimum Marker to: Center frequency, reference level, start frequency, stop frequency Offset markers Couple markers between traces Marker functions: Peak track, frequency counter, band power (frequency, time, or demodulation results), peak/average statistics Memory and data storage

Disk devices Nonvolatile RAM disk (100 Kbyte) Volatile RAM disk (up to 20 Mbyte) 90 mm (3.5-inch) 1.44 Mbyte flexible disk (LIF or MS-DOS[®] formats) External GPIB disk Disk format and file delete, rename, and copy Nonvolatile clock with time/date Save/recall of: Trace data, instrument states, trace math functions, Instrument BASIC programs, time-capture buffers

Hard copy output

GPIB/HPGL plotters GPIB/RS-232/parallel printers Plot to file Time stamp Single-plot spooling

Interfaces

GPIB (IEEE 488.1 and 488.2) External reference in/out External PC-style keyboard Active probe power RS-232 (one port) Centronics LAN and second GPIB Standard data format utilities

Optional features

89410A-B7A)

Second 10 MHz input channel (Option 89410A-AY7) Extend time capture to 1 MSample (Option 89410A-AY9) Precision frequency reference (Option 89410A-AY5) Instrument BASIC (Option 89410A-1C2) Vector modulation analysis (Option 89410A-AYA) Digital video modulation analysis (Option 89410A-AYH) Waterfall and spectrogram (Option 89410A-AYB) Advanced LAN support (Option 89410A-UG7) Instrument BASIC (Option 89410A-1C2) Vector modulation analysis (Option 89410A-AYA) Digital video modulation analysis (Option 89410A-AYH) Waterfall and spectrogram (Option 89410A-AYB) Advanced LAN support (Option 89410A-UG7) 3GPP W-CDMA analysis, includes Code Domain Power (Option 89410A-080) W-CDMA code domain power for exper. sys. (Option 89410A-B73) ARIB 1.0-1.2 W-CDMA analysis (Option 89410A-B79) Enhanced data rates for GSM evol. (EDGE) (Option

2

Frequency

Frequency tuning (characteristic only)		
Frequency range	dc to 10 MHz $$	
Frequency span	1 Hz to 10 MHz	
Center frequency tuning resolution	0.001 Hz	
Number of frequency points/span	51 to 3,201	

Signal track (when enabled) keeps the largest measured signal at the center frequency.

Frequency accuracy (with standard high-precision

frequency reference)

Frequency accuracy is the sum of initial accuracy, aging, and temperature drift.

Initial accuracy		
With precision		
frequency reference,		
Option 89410A-AY5		

±10 ppm ±0.2 ppm

Aging With precision frequency reference, Option 89410A-AY5 ±0.5 ppm/month ±0.25 ppm/month

Frequency counter

The frequency counter operates in scalar or vector mode.

Frequency counter accuracy

Total accuracy is the sum of the frequency counter's basic accuracy and the instrument's frequency accuracy.

Conditions/Exceptions:

Signal-to-noise ratio within resolution bandwidth, 20 dB minimum

Marker within $^{1\!/_{2}}$ resolution bandwidth of peak Unspecified for uniform window and resolution bandwidth $< 5~{\rm Hz}$

Frequency counter basic accuracy

Stability (spectral purity)

Absolute and residual phase noise, $F_{\rm in}$ = 10 MHz (with optional precision frequency reference or equivalent)

100 Hz offset	< -106 dBc/Hz
1 kHz offset	< -110 dBc/Hz
$\geq 10~\rm kHz$ offset	< -120 dBc/Hz

Phase noise decreases with decreasing input frequency by 20 $\log_{10}\left(F_{in}/10~\text{MHz}\right)$ dB.

Resolution bandwidth

Range	$312.5 \ \mu\text{Hz}$ to $3 \ \text{MHz}$ in
	1, 3, 10 sequence or arbitrary
	user-definable bandwidth

Note: In scalar mode, the minimum resolution bandwidth is 312.5μ Hz and the maximum resolution bandwidth is a function of span. In vector mode, the minimum resolution bandwidth is a function of span and the number of frequency points, and the maximum resolution bandwidth is a function of span only.

Window	Selectivity ¹	Passband flatness	Sideband level
Flat-top Gaussian-top Honning	2.45:1 4.0:1 9 1·1	+0, -0.01 dB +0, -0.68 dB	– 95 dBc –125 dBc –32 dBc
Hanning Uniform	9.1:1 716:1	+0, –1.5 dB +0, –4 dB	–32 dBc –13 dBc

1. Shape factor or ratio of -60 dB to -3 dB bandwidths.

Amplitude

A/D overload level (typical) > 5.0 dB above range

Auto-ranging (characteristic only) Up-only, up-down, single, off

Input port

Input channels	1 (second 10 MHz input channel optional)
Return loss	
50 Ω input	> 25 dB
75 Ω input	> 20 dB
Coupling	dc/ac (ac coupling attenuation < 3 dB at 3 Hz)
Input Impedance	$50/75 \Omega$, 1 M Ω ±2% (< 80 pF shunt capacitance)
Connector	BNC

Amplitude accuracy

Accuracy specifications apply with flat-top window selected. Amplitude accuracy is the sum of absolute full-scale accuracy and amplitude linearity.

Absolute full-scale accuracy (signal level equal to range) $\pm 0.5 \text{ dB}$

Amplitude linearity	
0 to -30 dBfs	< 0.10 dB
-30 to -50 dBfs	< 0.15 dB
-50 to -70 dBfs	< 0.20 dB
Residual dc (50 Ω)	< -25 dBfs

Dynamic range

Dynamic range indicates the amplitude range that is free of erroneous signals within the measurement bandwidth.

Harmonic distortion (with a single full scale signal at the input) 2nd <-75 dBc (-80 dBc typical)

2nd	< -75 dBc (-80 dBc typical)
3rd, 4th, 5th	< -75 dBc (-85 dBc typical)

Intermodulation distortion (with two input tones at 6 dB below full scale)

Second order	
Third order	

< -75 dBc (-80 dBc typical) < -75 dBc (-85 dBc typical)

Typical harmonic and intermodulation distortion

Residual (spurious) responses (50 Ω input)

Frequencies < 1 MHz	< -75 dBfs or < -100 dBm
	whichever is greater
Frequencies ≥ 1 MHz	< -80 dBfs
Alice memory	< -80 dBfs
Alias responses	< -80 ubis
(for a single out-of-band	
tone at full scale)	

Input noise density (50 Ω input, vector mode or scalar mode with sample detector)

1 kHz to 40 kHz	< -101 dBfs/Hz
40 kHz to 10 MHz	< -114 dBfs/Hz
	(-118 dBfs/Hz typical)

Sensitivity (-30 dBm range, 50 Ω input, vector mode or scalar mode with sample detector)

40 kHz to 10 MHz< -144 dBm/Hz (-148 dBm/Hz tyCrosstalk< -85 dBfs (source-to-input or channel-to-channel, 50 Ω terminations)	Z
Crosstalk < -85 dBfs (source-to-input or channel-to-channel,	Z
(source-to-input or channel-to-channel,	typical)

Time (vector mode)

Time-sample resolution = $1/(k^*span(Hz))$ [second]; where k = 1.28 for zoom time, 2.56 for baseband time measurements.

Main time length = (number of frequency points – 1) ÷ span (Hz) [second]; for resolution bandwidth in arbitrary and auto-coupled mode.

Amplitude accuracy ±5% full scale (for a sine wave in the measurement passband, time-domain calibrations on)

Sample error rate for zoom time (typical)Error threshold:10-* times/sample5% full scale

Sample error rate reflects the probability of an error greater than the error threshold occurring in one time sample.

Analog < 1 ns channel-to-channel time skew (time-domain calibrations on, both channels on the same range)

Phase (vector mode)

Phase specifications apply with flat-top window selected.

Deviation from linear ±5 deg phase (relative to best fit line with peak signal level within 6 dB of full scale)

Analog demodulation

Demodulation specifications apply with demodulation mode selected and time-domain calibration on.

AM, PM, or FM demodulation. Auto carrier locking is available with PM or FM demodulators and the carrier value determined is a displayable marker function.

Demodulator bandwidth (determined by selected measurement span)

Maximum bandwidth 10 MHz (typical)

AM demodulation (typical performance)

Accuracy	±1%
Dynamic range	60 dB (100%) for a pure
	AM signal
Cross demodulation	< 0.3% AM on an FM signal
	with 10 kHz modulation,
	200 kHz deviation
PM domodulation (typical)	norformance)

PM demodulation (typical performance)

Accuracy	±0/0 degrees
Dynamic range	60 dB (rad) for a pure
	PM signal
Cross demodulation	< 1 degree PM on an AM
	signal with 80% modulation
FM demodulation (typical p	erformance)
Accuracy	±1% of span
Dynamic range	60 dB (Hz) for a pure
	FM signal
Cross demodulation	< 0.5% of span FM on an AM
	signal with 80% modulation

Two-channel

The second 10 MHz input channel (Option 89410A-AY7) provides additional measurements, including frequency response, coherence, cross spectrum, and cross correlation. These measurements are made by comparing a signal on channel two to a signal on channel one.

Channel match

±0.25 dB, ±2.0 deg

(At the center of the frequency bins, dc coupled, 16 rms averages, frequency response, full scale inputs, both inputs on the same range. Exclude the first 5 bins of the dc response.)

Trigger

00	
Trigger types	
Scalar mode	Free run, input channel, internal source, GPIB, external (each measurement step requires a separate trigger)
Vector mode	Free run, input channel, IF channel, internal source, GPIB, external
Pre-trigger delay range (see sample resolution)	time specifications for
One channel	64 Ksamples (1 Msample with extended time capture, Option 89410A-AY9)
Two channels (requires second 10 MHz input,	32 Ksamples (0.5 Msample with extended time capture, Option 89410A-AY9) Option 89410A-AY7)
Post-trigger delay range (see time specifications for sample resolution)	2 Gsample
IF trigger (characteristics of Used to trigger only on in- bandwidth is determined (rounded to the next hig	band energy, where the trigger I by the measurement span
External trigger (positive an Level accuracy Range Input impedance	nd negative slope) ±0.5 V ±5 V 10 kΩ (typical)
External Arm Level accuracy Range Input impedance	±0.5 V ±5 V 10 kΩ (typical)
Input channel trigger (posit Level accuracy Range Resolution	ive and negative slope) ±10% full scale ±110% full scale Full scale/116 (typical)

Source (with output filter on)

Source types

Scalar mode Vector mode	CW (fixed sine), arbitrary CW, random noise, periodic chirp, arbitrary
Random noise source % of energy in-band (Span = 10 MHz/2 ^N , N = 1 to 24)	> 70%
Periodic chirp source % of energy in-band	> 85%

Frequency

Frequency range	dc to 10 MHz
Frequency resolution	25 μHz
requerey resolution	
Amplitude	
Source level	
CW and random noise	-110 dBm to +23.979 dBm (50 Ω), 5.0 Vpk maximum
Periodic chirp and arbitrary	–110 dBm +19.542 dBm (50 Ω), 3.0 Vpk maximum
DC offset	±3.42 V maximum (resolution and range of programmable dc offset is dependent on source amplitude)
Amplitude accuracy (50 Ω , f	fixed sine)
-46 dBm to +24 dBm	±1.0 dB
–56 dBm to –46 dBm	±2.0 dB
Harmonic and other spuriou 0 V dc offset)	us products (fixed sine,
dc to 10 kHz	< -55 dBc
10 kHz to 5 MHz	< -40 dBc
5 MHz to 10 MHz	< -33 dBc

Source port

Return loss	> 20 dB
Source impedance	$50/75~\Omega$

Arbitrary source characteristics

The arbitrary source repetitively outputs data stored in a data register. The data register may contain a single time record or, with Option 89410A-AYB, a trace buffer. The time length of the register depends on the time-sample resolution for the span entered when the data register was saved or created. See time specifications for time-sample resolution details.

Arbitrary source length	
Single time record	Up to 4,096 complex or 8,192 real points.
Trace buffer (requires Option 89410A-AYB)	Up to 16,384 real or complex points. Some configurations allow up to 32,768 real or complex points (see the <i>Operator's Guide</i> for details)

Safety and environmenta	al
	CSA Certified for Electronic Test and Measurement Equipment per CSA C22.2, No. 231
This product is designed for IEC348, 1978.	compliance to UL1244 and
Acoustics	LpA < 55 dB typical at 25°C ambient (Temperature controlled fan to reduce noise output)
Temperature Operating Internal disk operations Storage (no disk in drive)	0° to 45°C 4° to 40°C -20° to 60°C
Humidity, non-condensing Operating Internal disk operations Storage (no disk in drive)	10% to 85% at 40°C 20% to 80% at 30°C 10% to 85% at 40°C
Altitude Operating (above 2,285 in (7,500 ft), derate operating temperature by -3.6°C/1,000 m (-1.1°C/1,000 ft)) Storage	4,600 m (15,000 ft) 4,600 m (15,000 ft)
Calibration interval	1 year
Warm-up time	30 minutes
Power requirements 115 VAC operation 230 VAC operation	90 to 140 Vrms, 47 to 440 Hz 198 to 264 Vrms, 47 to 63 Hz
Maximum power dissipation	750 VA
IEC 801-3 (Radiated Immunit	y) Performance degradation

IEC 801-3 (Radiated Immunity) Performance degradation may occur at Severity Level 2.

Physical

Weight	21 kg (46 lb)
Dimensions	
Height	230 mm (9.1 in)
Width	426 mm (16.7 in)
Depth	530 mm (20.9 in)

Real time bandwidth (characteristics only)

Real-time bandwidth is the maximum frequency span that can be continually analyzed without missing any time segment of the input signal.

Frequency spans of 10⁷/2ⁿ Hz, arbitrary auto-coupled resolution bandwidth, markers off, and one display trace with calculations off on other traces, and maximum frequency points equal to number of frequency points.

Averaging off

Single-channel vector mode (log magnitude spectrum measurement data, 1,601 frequency points, channel 2 off, averaging off)

78.125 kHz, 60 updates/second

39.0625 kHz,

60 updates/second

Two-channel vector mode (requires second 10 MHz input channel, Option 89410A-AY7) (Log magnitude frequency response measurement data, 801 frequency points, averaging off)

Averaging

Single-channel vector mode averaging (log magnitude spectrum measurement data, 1,601 frequency points, channel 2 off) Fast average 78.125 kHzDisplayed 78.125 kHz,

48 updates/second

Two-channel vector mode averaging (requires second 10 MHz input channel, Option 89410A-AY7) (Log magnitude frequency response measurement data, 801 frequency points) Fast average 39.0625 kHz Displayed 39.0625 kHz, 48 updates/second

Demodulation

Single-channel analog demodulation mode (log magnitude spectrum measurement data, 1,601 frequency points, time cal off, channel 2 off, averaging off)

AM demodulation	39.0625 kHz
FM demodulation	19.53125 kHz
PM demodulation	9.765625 kHz

Measurement speed

Display update speed (vector mode with full span, one or two channels, 401 frequency points, no averaging, markers off, single trace with calculations off on other traces, log magnitude spectrum, frequency spans of $10^{7}/2^{n}$ Hz): 57/second

Averaging (characteristics only)

Number of averages	1 to 99,999
Overlap averaging	0% to 99.99%
Average types Scalar mode Vector mode	rms (video), rms (video) exponential, peak hold rms (video), rms (video) exponential, time, time exponential, peak hold

Fast averaging allows averaging a user-defined number of measurements without updating the displayed result. This provides faster averaging results for most measurements.

Gating (characteristics only)

Time-selective, frequency-domain analysis can be performed on any input or analog demodulated time-domain data. When gating is enabled, markers appear on the time data; gate length and delay can be set directly. Independent gate delays can be set for each input channel. See time specifications for main time length and time resolution details.

Gate length

Maximum: Main time length

Minimum: Approximately window shape \div (0.3 x span (Hz)) [seconds]; where window shape (ws) and minimum gate length for a 10 MHz zoom time span are (for 10 MHz baseband time spans subtract 39.0625 ns):

Window	ws	Minimum gate length	
Flat-top	3.819	1.328125 µs	
Gaussian-top	2.215	781.25 ns	
Hanning	1.5	546.875 ns	
Uniform	1.0	390.625 ns	

Time-capture (characteristics only)

Direct capture of input waveforms can be accomplished with spans of 10 MHz/ 2^{n} Hz. See time specifications for time-sample resolution details.

Time capture memory: 64 Ksample; 1 Msample (Option 89410A-AY9)

Benchmarks: For a one-channel, zoom time measurement (for baseband time, halve the time), 64 Ksample captures from 5.12 ms in a 10 MHz span to over 11.9 hours in a 1.19 Hz span. The optional 1 Msample captures from 81.92 ms in a 10 MHz span to over 190 hours in a 1.19 Hz span. Memory is shared if two channels are enabled, therefore length of capture is half as long.

Band power marker (characteristics only)

Markers can be placed on any time, frequency, or demodulated trace for direct computation of band power, rms square root (of power), C/N, and C/N_o within the selected portion of the data.

Peak/average statistics

Peak and peak-to-average statistics can be enabled on main time, gate time, IQ measured time (Option 89410A-AYA), IQ reference time (Option 89410A-AYA), and math functions involving these trace types. Average power and peak statistics are computed using all samples in the active trace. Each successive trace adds additional samples to the calculations.

Displayed results	average power peak power peak/average ratio number of samples
Peak percent	90% – 99.99%. Setting can be changed at any time during or after the measurement.
Signal characteristics	
Peak power range	+13 dB relative to average power of the first-time record
Average power range	±3 dB relative to average power of the first time record.

Display (characteristic only)

Trace formats	One to four traces on one, two, or four grids or a quad display
Other displays	On-line help text, view state
Number of colors	User-definable palette
Display points/trace	401
User-definable trace titles a X-axis scaling	nd information Allows expanded views of portions of the trace information
Display blanking	Data or full display
Graticule on/off	
Center	±5 mm referenced to bezel opening
Dimensions Height Width Diagonal	107 ±5 mm 154 ±5 mm 187.2 mm (7.4 in)

Status indicators

Overload, half range, external trigger, source on/off, trigger, pause, active trace, remote, talk, listen, SRQ.

External PC-style keyboard interface

Compatible with PC-style 101-key keyboard: male DIN5 to PSC type mini-DIN6 pin female adapter required for some keyboards.

Interfaces (characteristics only)

Active probe power	+15 Vdc, –13 Vdc; 150 mA maximum, compatible with Agilent active probes
Sync out	Active low TTL level signal synchronous with source output of periodic chirps and arbitrary blocks up to 8,192 samples.
External reference in/out	
1	<pre>t Locks to a 1, 2, 5, or 10 MHz (±10 ppm) with a level > 0 dBm</pre>
External reference outpu	t Output the same frequency as the external reference input at a level of > 0 dBm into a 50 Ω load.
GPIB	
	d 488.1 and 488.2 SH1, AH1, , PP0, DC1, DT1, C1, C2, C3,
Benchmark characteristics 401 frequency-point traces)	
Scalar Vector	25 traces/second 20 traces/second
RS-232	Serial port (9-pin) for connection to printer
Centronics	Parallel port for connection to a printer
External monitor output	
Format	Analog plug-compatible with 30.15 kHz multi-sync monitors
Impedance	75 Ω
Level	0 to 0.7 V
Display rate Horizontal refresh rate	57.43 Hz 30.15 kHz
Horizontal lines	400

LAN I/O

LAN support: Ethernet (IEEE 802.3) TCP/IP

LAN interface: ThinLAN (BNC connector) or AUI

Program interface: Send and receive GPIB programming codes, status bytes, and measurement results in ASCII and/or binary format.

Second GPIB I/O

Secondary GPIB port: Per IEEE 488.1 and 488.2

Functions: Controller-only; accessible from IBASIC program or front panel commands.

Peripherals

Plot/print

Direct plotting and black-and-white printing to parallel (Centronics), serial (RS-232), and GPIB graphics printers and plotters. Printers supported include the HP LaserJet, HP Paint.Jet, HP ThinkJet, HP DeskJet, and HP QuietJet. Single-plot spooling allows instrument operation while printing or plotting a single display.

Memory and data storage

Disk devices

Nonvolatile RAM disk Volatile RAM disk	100 Kbyte 21 Mbyte that can be partitioned between measurement, Instrument BASIC program space and RAM. Volatile RAM also supports memory of waterfalls and spectrograms with Option 89410A-AYB.
Internal 90 mm (3.5-inch) flexible disk (LIF or MS-DOS [®] formats)	1.44 Mbyte

External disk GPIB interface

Disk format and file delete, rename, and copy

Nonvolatile clock with time/date

Save/recall can be used to store trace data, instrument states, trace math functions, Instrument BASIC programs, and time-capture buffers.

Benchmarks (typical disk space requirements for different file types)

Trace data (401 points)	6.2 Kbyte
Instrument state	12.3 Kbyte
Trace math	2 Kbyte
Time-capture buffers	271 Kbyte
(32 Ksamples)	

Trace math

Operands	measurement data, data register, constant, other trace math functions, jw
Operations	+, –, *, /, cross correlation, conjugate, magnitude, phase, real, imaginary, square root, FFT, inverse FFT, natural logarithm, exponential

Trace math can be used to manipulate data on each measurement. Uses include user-units correction and normalization.

Marker functions

Peak signal track, frequency counter, band power, peak/average statistics.

Standard data format utilities

Included on three 90 mm (3.5-inch) 1.44 Mbyte flexible disks. The utilities run in MS-DOS^{\circ} 2.1 or greater on an IBM PC (AT or higher) or compatible. The utilities include conversions to standard data format (SDF), PC displays of data and instrument state information, and utilities for conversion to PC-MATLAB, MATRIX_x, data set 58, and ACSII formats.

Vector modulation analysis – Option 89410A-AYA

Supported modulation formats

The vector modulation analysis option supports both single modulated carriers and separate baseband I-Q signals. The optional second 10 MHz input channel is required for baseband I and Q analysis.

Carrier types	Continuous and pulsed/burst (such as TDMA)	Symbol rate = <u>Bits/Seco</u> Bits/Symbol is de	nd bol termined by the modulation
Modulation formats	2 level FSK (including GFSK) 4 level FSK	type. Example: For the r	•
	MSK (including GMSK) QAM implementations of: BPSK, QPSK, OQPSK, DQPSK, $\pi/4$ DQPSY, 8PSK, 16QAM, 32QAM	-	ats other than FSK) t, 50 kHz span, result length nbol. IQ envelope triggering
Default parameter settings	NADC, PDC (JDC), GSM, PHS, DECT, CDPD, TETRA CDMA Base, CDMA Mobile	Update rate	> 2 per second (characteristic only)
Filtering	CDMA Base, CDMA Mobile	I-Q measured	Time, spectrum (Filtered, carrier locked, symbol locked)
All filters are computed to	20 symbols in length	I-Q reference	Time, spectrum (Ideal,
Filter types	Raised cosine Square-root raised cosine		computed from detected symbols)
	IS-95 compatible Gaussian None	I-Q error vs. time	Magnitude, phase (I-Q measured vs. reference)
	Rone Rectangular Low pass	Error vector	Time, spectrum (Vector error of computed vs. reference)
User-selectable filter parameters	Alpha/BT continuously adjustable from 0.05 to 100	Symbol table + error summary	Error vector magnitude is computed at symbol times only
User-defined filters	User-defined impulse response, fixed 20 points/symbol Maximum 20 symbols in length or 401 points	Measurement results (FSK) FSK measured FSK reference Carrier error FSK error	U C

Frequency and symbol rate:

Information bandwidth

 $\leq 20 \text{ MHz}^1$

 $\leq 10 \text{ MHz}$

Symbol rate is limited only by the information bandwidth

Receiver mode

ch1 + j*ch2

0 to 10 MHz

Symbol rate

1. Two-channel measurements such as ch1 + j*ch2 require Option 89410A-AY7 second 10 MHz input channel.

Display formats

The following trace formats are available for measured data and computed ideal reference data, with complete marker and scaling capabilities and automatic grid line adjustment to ideal symbol or constellation states.

Polar diagrams

Constellation: Samples displayed only at symbol times

Vector: Display of trajectory between symbol times with 1 to 20 points/symbol

I or Q vs time

Eye diagrams: Adjustable from 0.1 to 10 symbols Trellis diagrams: Adjustable from 0.1 to 10 symbols

Continuous error vector magnitude vs. time

Continuous I or Q vs. time

Error summary (formats other than FSK) Measured rms and peak values of the following: Error vector magnitude Magnitude error Phase error Frequency error (carrier offset frequency) I-Q offset Amplitude droop (formats other than QAM) SNR (QAM formats)

Error summary (FSK)

Measured rms and peak values of the following: FSK error Magnitude error Carrier offset frequency Deviation

Detected bits (symbol table)

Binary bits are displayed and grouped by symbols. Multiple pages can be scrolled for viewing large data blocks.

Symbol marker (current symbol shown as inverse video) is coupled to measurement trace displays to identify states with corresponding bits. For formats other than FSK and MSK, bits are user-definable for absolute states or differential transitions.

Note: Synchronization words are required to resolve carrier phase ambiguity on non-differential modulation formats. **Accuracy** (formats other than FSK and IS-95 CDMA) Conditions: Specifications apply from 20° to 30°C, for a full-scale signal fully contained in the selected measurement span, random data sequence, instrument receiver mode of 0 to 10 MHz, start frequency $\geq 15\%$ of span, alpha/BT ≥ 0.3 ,¹ and symbol rate ≥ 1 kHz. For symbol rates less than 1 kHz, accuracy may be limited by phase noise.

Residual errors (result length = 150 symbols, averages = 10) Error vector magnitude

Lifer vector magnitude	
Freq span $\leq 100 \text{ kHz}$	0.3% rms
Freq span $\leq 1 \text{ MHz}$	0.5% rms
Freq span > 1 MHz	1.0% rms
Magnitude error	
Freq span $\leq 100 \text{ kHz}$	0.3% rms
Freq span $\leq 1 \text{ MHz}$	0.5% rms
Freq span > 1 MHz	1.0% rms

Phase error (For modulation formats with equal symbol amplitudes.)

 $\begin{array}{ll} \mbox{Freq span} \leq 100 \mbox{ kHz} & 0.17^{\circ} \mbox{ rms} \\ \mbox{Freq span} \leq 1 \mbox{ MHz} & 0.34^{\circ} \mbox{ rms} \\ \mbox{Freq span} > 1 \mbox{ MHz} & 0.57^{\circ} \mbox{ rms} \end{array}$

Frequency error Symbol rate/500,000 (Added to frequency accuracy if applicable.)

Origin/I-Q Offset -60 dB

Accuracy (2 FSK and 4 FSK)

Residual errors, typical

4 FSK or 2 FSK, symbol rate = 3.2 kHz, deviation = 4.8 kHz, instrument receiver mode of 0 to 10 MHz, 50 kHz span, full scale signal, result length = 150, averages = 10, tenth-order Bessel filtering with 3 dB bandwidth = 3.9 kHz.²

FSK error	0.5 % rms
Magnitude error	0.3 % rms
Deviation	±0.3 % rms (14 Hz)
Carrier frequency offset	± 0.3 % of deviation
(Added to frequency	
accuracy if applicable)

DECT preset (2 FSK, symbol rate = 1.152 MHz, BT = 0.5) 288 kHz deviation, instrument receiver mode of 0 to 10 MHz, 4 MHz span, full-scale signal, result length = 150, averages = 10.

FSK error	1.5% rms
Magnitude error	1.0% rms
Deviation	±1.0% rms (2.88 kHz)
Carrier frequency offset	±0.5% of deviation
(Added to frequency	
accuracy if applicable))

1. $0.3 \le alpha \le 0.7$ for Offset QPSK.

^{2.} For error analysis, a Gaussian reference filter with BT = 1.22 is used to approximate the tenth-order Bessel filter.

Accuracy (IS-95 CDMA)

CDMA Base or CDMA Mobile preset, instrument mode of Input (0 to 10 MHz), 2.6 MHz span, full scale signal, result length = 200, averages = 10.

Residual Errors

Error vector magnitude 1% rms Magnitude error 1% rms 0.57° rms Phase error Frequency error 10 Hz (Added to frequency accuracy if applicable) Origin I/Q offset -60 dB

Signal acquisition

Note: Signal acquisition does not require an external carrier or symbol clock

Data block length

Adjustable up to 4,096 samples 4,096 symbols at 1 point/symbol 409 samples at 10 points/symbol

Symbol clock Carrier lock

Internally generated Internally locked

Triggering

Single/continuous External Internal source Pulse search (searches data block for beginning of TDMA burst, and performs analysis over selected burst length)

Data synchronization

User-selected synchronization words Arbitrary bit patterns up to 30 symbols long, at any position in a continuous or TDMA burst and measurement result. Up to 6 words can be defined.

Arbitrary waveform source

RAM-based arbitrary waveforms

Waveform registers Maximum 6 Waveform length 4096 complex points each (16,384 with Option 89410A-AYB)

Residual accuracy, typical Examples $\pi/4DQPSK, 24.3$ $EVM \le 0.7\%$ rms ksymbols/second, $\alpha = 0.35$ GMSK, 270.833 $EVM \le 1.0 \text{ rms}$ ksymbols/second, BT = 0.30

Adaptive equalization

This option equalizes the digitally-modulated signal to remove effects of linear distortion (such as unflatness and group delay) in a modulation quality measurement.

Equalizer performance is a function of the filter design (e.g., length, convergence, taps/symbol) and the quality of the signal being equalized.

Equalizer

Decision-directed, LMS, feed-forward equalization with adjustable convergence rate.

Filter length Filter taps

3 to 99 symbols, adjustable 1, 2, 4, 5, 10, or 20 taps/symbol

Measurement results

Equalizer impulse response Channel frequency response

Supported modulation formats

MSK, BPSK, QPSK, OQPSK, DQPSK, π/4DQPSK, 8 PSK, 16 QAM, 32 QAM, 64 QAM, 256 QAM, 8 VSB, 16 VSB

Digital video modulation analysis— **Option 89410A-AYH (requires Option 89410A-AYA)**

This option extends the capabilities of the vector modulation analysis Option 89410A-AYA by adding modulation formats used for digital video transmission. Except where noted, all of the standard capabilities of Option 89410A-AYA are provided for the new modulation formats.

Supported modulation formats

Additional modulation	8 and 16VSB
Formats	16, 32, 64, and 256QAM 16,
	32, and 64QAM
	(differentially encoded per

DVB standard)

Maximum symbol rate

Option 89410A-AYH analyzes vector modulated signals up to a maximum symbol rate determined by the information bandwidth of the receiver mode and the excess bandwidth factor (α) of the input signal, according to:

	Information bandwidth
Max symbol rate \leq	1 + α

(Note: the maximum symbol rate is doubled for VSB signals.)

Receiver mode	Information bandwidth
ch1 + j*ch2	≤ 20 MHz 1
0 to 10 MHz	$\leq 10 \text{ MHz}$
External	≤ 10 MHz $^{\scriptscriptstyle 1}$

Example: For a 64QAM signal ($\alpha = 0.2$), the maximum symbol rate in 0-10 MHz mode is 10 MHz/(1.2) = 8.33 Msymbols/second.

Measurement results and display formats

Identical to Option 89410A-AYA measurement results and display formats except for the following changes to the error summary display:

VSB pilot level is shown, in dB relative to nominal.

For VSB formats, SNR is calculated only from the real part of the error vector.

For DVB formats, EVM is calculated without removing IQ offset.

Accuracy

Residual errors (typical)

8VSB or 16VSB, symbol rate = 10.762 MHz, α = 0.115, instrument receiver mode of 0 to 10 MHz, 7 MHz span, full-scale signal, result length = 800, averages = 10.

Residual EVM $\leq 1.5\%$ (SNR ≥ 36 dB)

16, 32, 64, or 256 QAM, symbol rate = 6.9 MHz, α = 0.15, instrument receiver mode of 0 to 10 MHz, 8 MHz span, full-scale signal, result length = 800, averages = 10.

Residual EVM $\leq 1.0\%$ (SNR ≥ 40 dB)

Filtering

All Option 89410A-AYA filter types are supported except user-defined filters for VSB analysis. Filters are calculated to 40 symbols in length.

Triggering and synchronization

All Option 89410A-AYA signal acquisition features are supported except pulse and sync word search for VSB analysis.

1. Downconverter dependent

Waterfall and spectrogram—Option 89410A-AYB

Waterfall	
Types	Vertical and skewed– Azimuth adjustable 0 to ±45 Normal and hidden line
	With or without baseline
Adjustable	Trace height
parameters	Buffer depth
	Elevation
	Threshold
Spectrogram	
Types	Color, normal and reversed
	Monochrome, normal and
	reversed
	User color maps (2 total)
Adjustable	Number of colors
parameters	Enhancement
	(color-amplitude weighting)
	Threshold

Trace select

When a waterfall or spectrogram measurement is paused or completed, any trace in the trace buffer can be selected by trace number or by z-axis value. The marker values and marker functions apply to the selected trace.

Z-axis value

The z-axis value is the time the trace data was acquired relative to the start of the measurement. The z-axis value of the selected trace is displayed as part of the marker readout.

Display update rate 30 to 60/second, typical

Memory required (characteristic only)

Displays occupy memory at the rate of 175 traces/ Mbyte (for traces of 401 frequency points). A full screen of 307 traces will require 2.25 Mbytes of free memory.

Advanced LAN support—Option 89410A-UG7

Remote X11 display (characteristic only)

Update rate: > 20 per second, depending on workstation performance and LAN activity.

X11 R4 compatible

X-terminals, UNIX workstations, PC with X-server software

Display: 640 x 480 pixel minimum resolution required; 1024 x 768 recommended.

FTP data (characteristic only)

Traces A, B, C, D Data registers D1-D6 Time capture buffer Disk files (RAM, NVRAM, floppy disk) Analyzer display plot/print

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-ofwarranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

By internet, phone, or fax, get assistance with all your test and measurement needs.

Online assistance: www.agilent.com/find/assist

Phone or Fax United States: (tel) 800 452 4844

Canada: (tel) 877 894 4414 (fax) 905 282 6495

China: (tel) 800 810 0189 (fax) 800 820 2816

Europe: (tel) (31 20) 547 2323 (fax) (31 20) 547 2390

Japan: (tel) (81) 426 56 7832 (fax) (81) 426 56 7840

Korea: (tel) (82 2) 2004 5004 (fax) (82 2) 2004 5115

Latin America: (tel) (305) 269 7500 (fax) (305) 269 7599

Taiwan: (tel) 0800 047 866 (fax) 0800 286 331

Other Asia Pacific Countries: (tel) (65) 6375 8100 (fax) (65) 6836 0252 Email: tm_asia@agilent.com

Product specifications and descriptions in this document subject to change without notice.

MS-DOS is a U.S. registered trademark of Microsoft Corporation. Matlab is a product of The Math Works. Matrix, is a product of Integrated Systems Inc.

© Agilent Technologies, Inc. 2002 Printed in U.S.A. May 30, 2002 5965-5427E

