

WaveSurfer[®] Xs-A and MXs-A Oscilloscopes 200 MHz – 1 GHz

ESSENTIAL TOOLS FOR VALIDATION AND DEBUG

WaveSurfer[®] Xs-A

- 200 MHz, 400 MHz, 600 MHz and 1 GHz bandwidths
- 2.5 GS/s Sample Rates per Channel, up to 5 GS/s with WS 104Xs-A
- 5 Mpts/Ch Memory
- Fast Processing of Long Memory and Math
- Responsive User Interface
- WaveStream[™] Fast Viewing Mode
- WaveScan[™] Advanced Search and Find
- 10.4" Touch Screen Display
- LXI Compliant

WaveSurfer® MXs-A

All the great features of the WaveSurfer Xs-A plus:

- 10 Mpts/Ch Memory
- Up to 5 GS/s per Channel
- LabNotebook™ Documentation and Report Generation
- Advanced Math with 15 Different Functions and Enhanced FFT
- Additional SMART Trigger™ Capabilities

Many oscilloscopes promise high-performance, great banner specs, ease-of-use and a rich feature set to shorten debug and validation time but the WaveSurfer[®] Xs-A and MXs-A oscilloscopes truly deliver on these promises.

Its small form factor packs a powerful processor that can handle long memory captures faster than any of the competition. The touch screen interface is the ultimate in ease-of-use. With features like WaveStream[™] fast viewing mode and WaveScan[™] Search and Find, you can be confident that every problem can quickly be detected and analyzed.

Beyond these great features, the WaveSurfer offers a wide range of serial data trigger and decode tools for SPI, I²C UART, RS-232, USB, Audiobus (I²S, LJ, RJ, TDM), MIL-STD-1553, ARINC 429, MIPI D-PHY, DigRF, CAN and LIN, as well as industry leading mixed signal capabilities to quickly troubleshoot embedded system designs. With bandwidths from 200 MHz to 1 GHz the WaveSurfer is the ideal oscilloscope for everyday design and debug.

			ADD DOUGH STREET			
0.00100.000	ABLINAD BLATTED MATCHDD		In ACCOUNTS OF LOOP	and a rest of the state of the	ALCOSO PERMIT	adente de datado
HIIH				HIHI		##!!##
1		- adada da	ահհղուհերուհ	Invidiant	COLUMN TRACT	14.4.1.40.1
-			COLUMN TWO IS NOT	-		
		111				1.1
	dista 1					
	planterturburk	J. J.	he parlanter	Julyba	holyday	Jownserver
	Lance Loud Refer					
	P fing(0))	F2(613)(01)	F2:10:(01)	Julyhad	lynlynlynlog oc	Jamparta
	P' floq(01) 1 0000010 kHz	F2(613)(01) -/5.3 m	F2:3:(p)(01) 1:26V			
lan Ion	P' freqC() 1 obccol t kHi 1 JUDIODITE KHI	#2:655(01) -45.2 m -41.3 J 5 m	F2tarqu(01) 1:28V 1.11223V			
## 941 1	P ² freqX01) 1 0000010 kHz 1 JULUUUUU HM2 1 JULUUUUU HM2	F2(613)(01) -/5.3 m	F2t3-qc(01) 1.126V 1.11223V 1.101V			
144 2241 41	P' frag(01) 1 obcotte HHL 1 JOUUSULE HHL 1 JOUUSULE HHL 1 OCCODE KILE 1 (OCCODE KILE	FC(653)01) A5.3 m 41.3 J 5 m 04.3 m 28.1 m	F2tarqu(01) 1:28V 1.11223V			
lakturo lak son ti ti ti ti ti ti ti ti ti	P ² freqX01) 1 0000010 kHz 1 JULUUUUU HM2 1 JULUUUUU HM2	#0:655(01) 45.3 m 41.335 m 04.3 m 04.3 m	F2:1:(p)(01) 1:26V 1.11223V 1:0:V 1:39V			
194 1920) 61 10-	PrifugiOII 1 doctori ti kis 1 JOUUGUVE KHE 1 DOUUGUVE KHE	F2(652)(01) 45.3 m 41.335 m 94.3 m 24.1 m 2.9 m 2.93 m 2.93 m	F2:s:q:(01) 1:25V 1:1223V 1:0:V 1:0:V 6:11:0V			
## %#% # #= #= 15 %	P: fragV01 1.000001 Hrs 1.000001 Hrs 1.000000 Hit 1.000000 Hit 1.000000 Hit 1.000000 Hit 1.000000 Hit 1.000000 Hit 1.00000 Hit 1.000000 Hit 1.00000 Hit 1.00000 Hit 1.000000 Hit 1.000000 Hit 1.00000	F2:653(01)	F2a.pri01(1.26V 1.11220V 1.01V 1.154V 6.41 mV 28		os Freizana (.)me	70- 11004 1015
## %#% # #= #= 15 %	Princy(0) 1000000 Hit 1000000 Hit 10000000 Hit 1000000 Hit 100000 Hit 1000000 Hit 1000000 Hit 1000000 Hit 100000 Hit 1000000 Hit 100000 Hit 10000 Hit 100000 Hit 10000 Hit 100000 Hit 1000000 Hit 1000000 H	F2r453(01) 453 88 41,335 88 04,3 88 241 88 243 88 245 88	F2a.pri01(1.26V 1.11220V 1.01V 1.154V 6.41 mV 28			

Speed and Responsiveness

The WaveSurfer was designed to shorten debug time through faster hardware and more sophisticated software. The hardware allows for fast processing of long memory even when using math and measurement functions. The software is designed to respond immediately to the user's input even while processing data, eliminating any lag or delay.

WaveScan Advanced Search

WaveScan allows searching in a single acquisition using more than 20 different modes. Or, set up a Scan condition and scan for an event over hours or days, and perform some action when it is found. The MS-250 or MS-500 mixed signal options add the ability to search digital channels as well as analog.

Touch Screen Simplicity

Keep your testing efficient with a thoughtfully designed user interface that provides the busy engineer with a GUI that is smooth, transparent, and easy to use. Use the touch screen to quickly access all triggers, math functions and measurement parameters or to "draw a box" around the area of interest and zoom all channels to the desired area.

Long Capture Time

With 5 Mpts/Ch (10 Mpts/Ch with MXs-A) of fast acquisition memory standard the WaveSurfer provides long capture time at full sample rate, and longer times at lower sample rates. WaveSurfer long memory is also thoughtfully designed to respond quickly, even when measurements, math, or serial decoders are being used.

Embedded Controller Design and Debug

Save time when working with embedded controllers by adding high-performance mixed signal capability to the WaveSurfer. Capture digital signals up to 500 MHz with up to 50 Mpts/Ch memory, 2 GS/s and 18 or 36 channels. Quickly and easily isolate specific serial data events with optional I²C, SPI, UART, RS-232, USB, Audiobus (I²S, LJ, RJ, TDM), MIL-STD-1553, ARINC 429, MIPI D-PHY, DigRF, CAN and LIN trigger and decode options.

WaveStream Fast Viewing Mode

WaveStream provides a vibrant, intensity graded (256 levels) display with a fast update to closely simulate the look and feel of an analog oscilloscope. Turn WaveStream ON or OFF, and adjust intensity, using the front panel knob. Use it only when you want to.

ZS Series High Impedance Active Probes

The ZS Series of high impedance active probes provide full bandwidth at the probe tip, and the high impedance $(1 M\Omega \parallel 0.9 \text{ pF})$ you want. A variety of standard and available probe tip and grounding accessories are offered to meet any requirement. What's more, ZS Series probes are available for a very affordable price. Use the ZS1000 with 200 to 600 MHz WaveSurfers and the ZS1500 with 1 GHz WaveSurfers to give full system bandwidth at the probe tip.

INTUITIVE USER INTERFACE TO FIND PROBLEMS FASTER

The new WaveSurfer Xs-A oscilloscope makes everyday testing simpler and easier. The intuitive user interface and streamlined front panel make it easy to turn on the oscilloscope and start making measurements. The interface is designed so that all the common measurements and functions are just one touch away.

1. Only 15 cm (6") Deep

The most space-efficient oscilloscope for your bench from 200 MHz to 1 GHz.

2. Local Language User Interface

Select from 10 language preferences. Add a front panel overlay with your local language.

3. Bright 10.4" Display

You'll never use a small display oscilloscope again. A fantastic viewing angle makes it easy to view.

4. "Push" Knobs

Trigger level, delay, and offset knobs all provide shortcuts to common actions when pushed.

5. Zoom Control Knobs

Navigate zoom or math traces with the multiplexed horizontal knobs.

6. LeCroy WaveStream Fast Viewing Mode

Provides a lively, analog-like feel similar to a phosphor trace. Adjust "trace" intensity with the front panel control, or toggle between LeCroy WaveStream and real-time modes.

7. Dedicated Cursor Knobs

Select type of cursor, position them on your signal, and read values without ever opening a menu.

8. Touch Screen with Built-in Stylus

The most time-efficient user interface is even easier to use with a built-in stylus.

Document and Share:

- Save to on-board hard drive
- Save to network drive
- E-mail to team members
- Send to a printer
- Utilize front mounted USB port
- Main port is standard 10/100Base-T Ethernet

WaveScan provides powerful isolation capabilities that hardware triggers can't provide. WaveScan provides the ability to locate unusual events in a single capture (i.e., capture and search), or "scan" for an event in many acquisitions over a long period of time. Select from more than 20 search modes to find events on any analog or digital channel or search for a pattern across multiple digital channels.

~

triggers, the utility and capability is much higher.

For instance, there is no "frequency" trigger in any oscilloscope, yet WaveScan allows for "frequency" to be quickly "scanned." This allows the user to accumulate a data set of unusual events that are separated by hours or days, enabling faster debugging. When used in multiple acquisi-

tions, WaveScan builds on the traditional LeCroy strength of fast processing of data. A LeCroy X-Stream oscilloscope will quickly scan millions of events looking for unusual occurrences, and do it much faster and more efficiently than other oscilloscopes can.

 \checkmark

WaveStream Fast **Viewing Mode**

WaveStream provides a vibrant, intensity graded (256 levels) display with a fast update rate to closely simulate the look and feel of an analog oscilloscope. WaveStream is most helpful in viewing signals that have signal jitter or signal anomalies, or for applying a visual check before creating an advanced trigger or WaveScan setup to locate an unusual event.

Since the sampling rate in WaveStream mode can be as high as 5 GS/s (up to 2.5x that of other oscilloscopes), it is an excellent runt or glitch finder. Timing jitter is often visually assessed to understand approximate behavior. WaveStream makes it easy to understand jitter on edges or in eye diagrams. WaveStream also excels in allowing you to relate composite (WaveStream) to single-event (real-time sampled) behaviors. Just capture in WaveStream mode, toggle to view or zoom a single trace, then toggle back to WaveStream mode.

EMBEDDED SYSTEM DESIGN AND DEBUG

Successful design and debug of an embedded system requires monitoring a wide range of signals at any given time. The WaveSurfer Xs-A and MXs-A oscilloscopes can be made in to an all-in-one tool for capturing analog, digital and serial signals simultaneously.

High-performance MSO

Capture digital signals up to 500 MHz with up to 50 Mpts/Ch memory, 2 GS/s, and 18 or 36 channels by adding the MS-500 or MS-250 to any model WaveSurfer. Create analog and digital cross-pattern triggers of up to 4 analog and 36 digital channels and view the data as individual lines or in a bus view.

I²C, SPI, UART, RS-232, USB Audiobus (I²S, LJ, RJ, TDM), MIL-STD-1553, ARINC 429, MIPI D-PHY, DigRF, CAN and LIN Serial Trigger and Decode

Quickly and easily isolate specific serial data events on your embedded controller for better understanding and faster debug with trigger conditions in binary or hexadecimal formats. The conditional data trigger allows for triggering on a range of values.

Intuitive, Color-coded Decode Overlay

Advanced software algorithms deconstruct the waveform into binary, hex, or ASCII protocol information, then overlay the decoded data on the waveform. Various sections of the protocol are color-coded to make it easy to understand. The decode operation is fast—even with long acquisitions.

Table Summary and Search/Zoom

Turn your oscilloscope into a protocol analyzer with the Table display of protocol information. Customize the table, or export Table data to an Excel file. Touch a message in the table and automatically zoom for detail. Search for specific address or data values in the acquisition.

dx	Time	Addr Length	Address	RW	Lengt	hData
В	240.494 ms		0x21		2	0xff 00 00
9	360.555 ms		0x21	0		0x08
10	360.698 ms		0x21		2	0x49 00 00
11	481.865 ms		0x21	0		0x0a
12	482.007 ms		0x21			0x00 00 00
13	606.294 ms	7	0.28	0	3	0x01 38 00
14	721.235 ms	7	0x20	0	1	0x00
15	721.377 ms		0x20		2	0x12 36 00
16	841.266 ms		0x20	0	1	0x02

THE WAVESURFER M-TYPE OSCILLOSCOPE

Higher sample rates, 10 Mpts/Ch memory, advanced math and triggering, enhanced FFT capabilities and LabNotebook make the WaveSurfer M-Type a truly unique oscilloscope.

No other product in this class offers such a powerful combination of features and banner specs making the WaveSurfer M-Type the ideal oscilloscope for fast and efficient debug from 200 MHz to 1 GHz.

High Sample Rate

5 GS/s max sample rate at 600 MHz and 5 GS/s per channel at 1 GHz to capture the fastest signals.

Long Capture

Maintain the high sample rate with 10 Mpts/Ch on all models.

Advanced Math and Triggering

Many oscilloscopes offer a small set of basic trigger modes, math functions and limited FFT. The M-Type offers 10 trigger modes, 1 Mpt FFT and 17 math functions.

LabNotebook[™]

A Unique Tool for Documentation and Report Generation

Use LabNotebook to quickly save and document all your work. With a single button press all displayed waveforms, relevant settings, and screen images can be stored. Easy report generation allows you to annotate screen images, share your findings and communicate important results; reports can even be emailed directly from the oscilloscope. The Flashback function lets you recall your settings from any report and use them to reproduce previous measurements.

PROBES, ACCESSORIES, AND OPTIONS

LeCroy offers an extensive range of probes, accessories, and options for WaveSurfer Xs-A. Leverage your investment with these items.

ZS Series High Impedance Active Probes Leading Features:

- 1 GHz (ZS1000) and 1.5 GHz (ZS1500) bandwidths
- High Impedance (0.9 pF, 1 M Ω)
- Extensive standard and available probe tip and ground connection accessories

- ±12 Vdc offset (ZS1500)
- LeCroy ProBus system

ADP305, ADP300

Leading Features:

- 20 MHz and 100 MHz bandwidth
- 1,000 V_{rms} common mode voltage
- 1,400 V_{peak} differential voltage
- EN 61010 CAT III
- 80 dB CMRR at 50/60 Hz
- LeCroy ProBus system

PPE1.2KV, PPE2KV, PPE4KV, PPE5KV, PPE6KV, PPE20KV Leading Features:

- Suitable for safe, accurate high-voltage measurements
- 1.2 kV to 20 kV
- Works with any 1 M Ω input oscilloscope

CP030, CP031

Leading Features:

- 30 A_{rms} continuous current (50 A_{peak})
- 50 or 100 MHz bandwidth
- Small form factor accommodates large conductors with small jaw size
- LeCroy ProBus system

AP031

Leading Features:

- Lowest priced differential probe
- 15 MHz bandwidth
- 700 V maximum input voltage
- Works with any 1 M Ω input oscilloscope

AP033, AP034

Leading Features:

- 500 MHz and 1 GHz bandwidth
- 10,000:1 CMRR
- Wide dynamic range, low noise
- LeCroy ProBus system

Advanced Trigger Option

Adds Runt, Slew Rate, Interval, Dropout, and Qualified/State triggers to the standard triggers.

Extended Math Option

Adds 12 additional math functions, chaining of two math functions, rescaling with unit selection, and 1 Mpts FFTs.

I²C, SPI, UART, RS-232, USB, Audiobus (I²S, LJ, RJ, TDM), MIL-STD-1553, ARINC 429, MIPI D-PHY, DigRF, CAN and LIN Trigger and **Decode Options**

Powerful serial triggering, including conditional data triggering, intuitive, color-coded decode overlay, search, and table display.

MS Series Mixed Signal Oscilloscope Options

Add high-performance mixed signal capability to a WaveSurfer Xs-A. Capture digital signals up to 500 MHz with up to 50 Mpts/Ch memory, 2 GS/s and 18 or 36 channels.

WAVESURFER Xs-A SPECIFICATIONS

	WaveSurfer 24Xs-A	WaveSurfer 44Xs-A	WaveSurfer 42Xs-A	WaveSurfer 64Xs-A	WaveSurfer 62Xs-A	WaveSurfer 104Xs-A
Bandwidth (@ 50 Ω)	200 MHz	200 MHz 400 MHz		600	MHz	1 GHz
Rise Time	1.75 ns	875	ō ps	500) ps	300 ps
Input Channels	4	4	2	4	2	4
Display	10.4" Color flat-panel TFT-LCD, 800 x 600 SVGA, touch screen					
Sample Rate (single-shot)						2.5 GS/s
						(5 GS/s Interleaved
Sample Rate (RIS mode)	50 GS/s					
Standard Record Length		5 Mpts/Ch (all channels)				
Standard Capture Time	Up to 2 ms at ful	l sample rate on all	four channels			
Vertical Resolution	8-bits					
Vertical Sensitivity (V/div)	2 mV/div–10 V/di	v (1 MΩ); 2 mV/div	–1 V/div (50 Ω)			
Vertical (DC Gain) Accuracy	±1.0% of full sca	le (typical); ±1.5%	of full scale ≥ 10 m	V/div (warranted)		
3W Limit	20 MHz			20 MHz, 200 MHz		
Maximum Input Voltage		50 Ω: 5 \	V _{rms} , 1 MΩ: 400 V	max.		50 Ω: 5 V _{rms}
			+ Peak AC ≤ 5 kHz			1 MΩ: 250 V max
						(DC + Peak AC
						≤ 10 kHz)
nput Coupling	AC, DC, GND (DO	C and GND for 50 g	Ω)			
nput Impedance		1 N	$\Lambda\Omega\parallel$ 16 pF, or 50 Ω			1 MΩ 20 pF,
						or 50 Ω
Probing System	BNC or ProBus					
Probes		One PP009 (5 mm) per channel	(standard)		One PP011 (5 mm
						per channel
						(standard)
Timebase Range	200 ps/div–1000 s/div (roll mode from 500 ms/div–1000 s/div)					
Timebase Accuracy	≤ 5 ppm @ 25 °C (typical) (≤ 10 ppm @ 5–40 °C)					
Frigger Modes	Normal, Auto, Sir					
Frigger Sources	Any input channe	el, External, Ext/10,	or line; slope and l	evel unique to each	source (except for	line trigger)
Trigger Coupling	DC, AC, HFRej, L	FRej				
Pre-trigger Delay	0–100% of full so	cale				
Post-trigger Delay	0–10,000 divisior					
Trigger Hold-off	1 ns to 20 s or 1	to 1,000,000,000 e	events			
Internal Trigger Level Range	±4.1 div from cer	nter				
External Trigger Range	EXT/10 ±4V; EXT	±400 mV				
Triggering						
Standard	Edge, Glitch, Wi	dth, Logic (Pattern), TV (NTSC, PAL, S	SECAM, HDTV – 72	20p, 1080i, 1080p)	
Measure, Zoom, and Ma	th Tools					
Standard Parameter	Up to 6 of the fo	llowing parameter	s can be calculated	at one time on an	v waveform: Amnl	itude, Area. Base
Veasurements				0%-20%), Frequen		
						%-80%), RMS, Skev
				surements can be g		, ,
Zooming				en or mouse to drav	-	zoom area
Standard Math				nd FFT (up to 25 kp		
				vs). 1 math function		
Physical						
Dimensions (HWD)	260 mm x 340 m	m v 152 mm Evol	uding appagariag	nd projections (10	25" v 13 /" v 6"\	
	260 mm x 340 mm x 152 mm Excluding accessories and projections (10.25" x 13.4" x 6") 7.26 kg. (16.0 lbs.)					

Options	
Advanced (WS Xs-ADVTRIG)	Runt, Slew Rate, Interval (Signal or Pattern), Dropout, Qualified (State or Edge)
Extended Math (WSXs-MATHSURF Option)	Adds the following additional math functions: Absolute Value, Averaging (summed and continuous), Derivative, Envelope, Enhanced Resolution (to 11-bits), Floor, Integral, Invert, Reciprocal, Rescale (change scale and units), Roof, Square, and Square Root. Also adds chaining of two math functions and 1 Mpts FFTs.

WAVESURFER MXs-A SPECIFICATIONS

	WaveSurfer 24MXs-A	WaveSurfer 44MXs-A	WaveSurfer 64MXs-A	WaveSurfer 104MXs-A			
Bandwidth (@ 50 Ω)	200 MHz	400 MHz	600 MHz	1 GHz			
Rise Time	1.75 ns	875 ps	500 ps	300 ps			
Input Channels	4						
Display	10.4" Color flat-pane	TFT-LCD, 800 x 600 SVGA, touch	n screen				
Sample Rate (single-shot)		2.5 GS/s	2.5 GS/s (5 GS/s Interleaved)	5 GS/s			
Sample Rate (RIS mode)	50 GS/s						
Standard Record Length	10 Mpts/Ch (all chan	nels)					
Standard Capture Time							
Vertical Resolution	8-bits	,					
Vertical Sensitivity (V/div)		MΩ); 2 mV/div–1 V/div (50 Ω)					
Vertical (DC Gain) Accuracy		typical); $\pm 1.5\%$ of full scale ≥ 10 i	mV/div (warranted)				
BW Limit	20 MHz		20 MHz, 200 MHz				
Maximum Input Voltage		50 Ω: 5 V _{rms} , 1 MΩ: 400 ∖ (DC + Peak AC ≤ 5 kH	/ max.	50 Ω: 5 V _{rms} 1 MΩ: 250 V max. (DC + Peak AC ≤ 10 kHz)			
Input Coupling	AC, DC, GND (DC ar	nd GND for 50 Ω)					
Input Impedance		1 MΩ 16 pF, or 50 Ω	2	1 MΩ 20 pF, or 50 Ω			
Probing System	BNC or ProBus						
Probes		One PP009 (5 mm) per channe	l (standard)	One PP011 (5 mm per channel (standard)			
Timebase Range	200 ps/div–1000 s/di	v (roll mode from 500 ms/div–10	00 s/div)				
Timebase Accuracy	≤ 5 ppm @ 25 °C (ty	bical) (≤ 10 ppm @ 5–40 °C)					
Trigger Modes	Normal, Auto, Single, and Stop						
Trigger Sources	Any input channel, E	xternal, Ext/10, or line; slope and	level unique to each source (except fo	r line trigger)			
Trigger Coupling	DC, AC, HFRej, LFR	əj					
Pre-trigger Delay	0–100% of full scale						
Post-trigger Delay	0–10,000 divisions						
Trigger Hold-off	1 ns to 20 s or 1 to 1	,000,000,000 events					
Internal Trigger Level Range	±4.1 div from center	±4.1 div from center					
External Trigger Range	EXT/10 ±4V; EXT ±4	00 mV					
Triggering							
Standard		Logic (Pattern), TV (NTSC, PAL, attern), Dropout, Qualified (State	SECAM, HDTV – 720p, 1080i, 1080p or Edge)), Runt, Slew Rate,			
Measure, Zoom, and Ma							
Standard Parameter Measurements	Up to 6 of the following parameters can be calculated at one time on any waveform: Amplitude, Area, Base (Low), Delay, Duty, Fall Time (90%-10%), Fall Time (80%-20%), Frequency, Maximum, Mean, Minimum, Overshoot+, Overshoot-, Period, Peak-Peak, Phase, Rise Time (10%-90%), Rise Time (20%-80%), RMS, Ske Standard Deviation, Top (High), Width+, Width Measurements can be gated.						
Zooming	Use front panel Quid	kZoom button, or use touch scre	een or mouse to draw a box around the	zoom area.			
Standard Math	Use front panel QuickZoom button, or use touch screen or mouse to draw a box around the zoom area. Operators include Sum, Difference, Product, Ratio, Absolute Value, Averaging (summed and continuous), Derivative, Envelope, Enhanced Resolution (to 11-bits), Floor, Integral, Invert, Reciprocal, Rescale (change scale and units), Roof, Square, Square Root and FFT (up to 1 Mpts with power spectrum output and rectangular, VonHann, and FlatTop windows). 1 math function may be defined at a time, 2 functions may be chained together.						
Physical							
Dimensions (HWD)	260 mm v 340 mm v	152 mm Excluding accessories	and projections (10.25" x 13.4" x 6")				
Net Weight	7.26 kg. (16.0 lbs.)						
	7.20 kg. (10.0 lb3.)						

ORDERING INFORMATION

Product Code Product Description WaveSurfer Xs-A Oscilloscopes 1 GHz, 2.5 GS/s, 4 Ch, 5 Mpts/Ch (5 GS/s interleaved) WaveSurfer 104Xs-A with 10.4" Color Touch Screen Display 600 MHz, 2.5 GS/s, 4 Ch, 5 Mpts/Ch WaveSurfer 64Xs-A with 10.4" Color Touch Screen Display WaveSurfer 62Xs-A 600 MHz, 2.5 GS/s, 2 Ch, 5 Mpts/Ch with 10.4" Color Touch Screen Display 400 MHz, 2.5 GS/s, 4 Ch, 5 Mpts/Ch WaveSurfer 44Xs-A with 10.4" Color Touch Screen Display WaveSurfer 42Xs-A 400 MHz, 2.5 GS/s, 2 Ch, 5 Mpts/Ch with 10.4" Color Touch Screen Display WaveSurfer 24Xs-A 200 MHz, 2.5 GS/s, 4 Ch, 5 Mpts/Ch with 10.4" Color Touch Screen Display

WaveSurfer MXs-A Oscilloscopes

1 GHz, 5 GS/s, 4 Ch, 10 Mpts/Ch	WaveSurfer 104MXs-A
with 10.4" Color Touch Screen Display	
600 MHz, 2.5 GS/s (5 GS/s interleaved) 4 Ch,	WaveSurfer 64MXs-A
10 Mpts/Ch with 10.4" Color Touch Screen Display	
400 MHz, 2.5 GS/s, 4 Ch, 10 Mpts/Ch	WaveSurfer 44MXs-A
with 10.4" Color Touch Screen Display	
200 MHz, 2.5 GS/s, 4 Ch, 10 Mpts/Ch	WaveSurfer 24MXs-A
with 10.4" Color Touch Screen Display	

Included with Standard Configuration (WaveSurfer Xs-A and MXs-A)

\div 10, 500 MHz, 10 M Ω Passive Probe (Total of 1 Per Channel)
Getting Started Manual and Quick Reference Guide
Standard Ports: 10/100Base-T Ethernet, USB 2.0 (5),
SVGA Video Out, Audio In/Out, RS-232
Protective Front Cover
Anti-virus Software (Trial Version)
Standard Commercial Calibration and Performance Certificate
3-year Warranty

Included with WaveSurfer MXs-A

10 Mpts/Ch Standard Memory
Advanced Triggering with LeCroy SMART Triggers
Extended Math with 15 Math Functions and Improved FFT Capabilities
LabNotebook Documentation and Report Generation

Memory Options

10 Mpts/Ch Memory Option (for 4 Ch WaveSurfer Xs-A)	WSXs-VL
10 Mpts/Ch Memory Option (for 2 Ch WaveSurfer Xs-A)	WSXs-VL2

Software Options

Advanced Trigger Software Package	WSXs-ADVTRIG
Extended Math Software Package	WSXs-MATHSURF
Electrical Telecom Mask Test Software Package	WSXs-ET-PMT

General Accessories

Keyboard Accessory	WSXs-KYBD
Optical Mouse Accessory	WSXs-MOUSE
External GPIB Accessory	WS-GPIB
Hard Carrying Case	WSXs-HARDCASE
Soft Carrying Case	WSXs-SOFTCASE
Rack Mount Accessory	WSXs-RACK
Accessory Pouch	WSXs-POUCH

Mounting Accessory

Clamp Mounting Stand

WSXs-MS-CLAMP

Product Description

Local Language Overlays

German Front Panel Overlay	WSXs-A-FP-GERMAN
French Front Panel Overlay	WSXs-A-FP-FRENCH
Italian Front Panel Overlay	WSXs-A-FP-ITALIAN
Spanish Front Panel Overlay	WSXs-A-FP-SPANISH
Japanese Front Panel Overlay	WSXs-A-FP-JAPANESE
Korean Front Panel Overlay	WSXs-A-FP-KOREAN
Chinese (Tr) Front Panel Overlay	WSXs-A-FP-CHNES-TR
Chinese (Simp) Front Panel Overlay	WSXs-A-FP-CHNES-SI
Russian Front Panel Overlay	WSXs-A-FP-RUSSIAN

Serial Data Options

I ² C Trigger and Decode Option	WSXs-I2Cbus TD
UART and RS-232 Trigger and Decode Opti	ion WSXs-UART-RS232bus TD
SPI Trigger and Decode Option	WSXs-SPIbus TD
LIN Trigger and Decode Option	WSXs-LINbus TD
CAN Trigger and Decode Option	WSXs-CANbus TD
MIL-STD-1553 Trigger and Decode Option	WSXs-1553 TD
ARINC 429 Symbolic Decode Option	WSXs-ARINC429bus DSymbolic
USB 2.0 Decode Option	WSXs-USB2bus D
D-PHY Decode Option	WSXs-DPHYbus D
DigRF3G Decode Option	WSXs-DigRF3Gbus D
Audiobus Trigger and Decode Option	WSXs-Audiobus TD
for I ² S, LJ, RJ, and TDM	

Mixed Signal Oscilloscope Options

MS-500
MS-500-36
MS-250

Probes and Amplifiers*

Set of 4 ZS1500, 1.5 GHz, 0.9 pF, 1 M Ω	ZS1500-QUADPAK
High Impedance Active Probe	
Set of 4 ZS1000, 1 GHz, 0.9 pF, 1 M Ω	ZS1000-QUADPAK
High Impedance Active Probe	
1 GHz Active Differential Probe (÷1, ÷10, ÷20)	AP034
500 MHz Active Differential Probe (x10, ÷1, ÷10, ÷100)	AP033
30 A; 100 MHz Current Probe – AC/DC; 30 A _{rms} ; 50 A _{pe}	ak Pulse CP031
30 A; 50 MHz Current Probe – AC/DC; 30 Arms; 50 Apeak	Pulse CP030
30 A; 50 MHz Current Probe – AC/DC; 30 Arms; 50 Apeak	Pulse AP015
150 A; 10 MHz Current Probe – AC/DC; 150 Arms; 500 A	_{peak} Pulse CP150
500 A; 2 MHz Current Probe – AC/DC; 500 Arms; 700 Apr	eak Pulse CP500
1,400 V, 100 MHz High-Voltage Differential Probe	ADP305
1,400 V, 20 MHz High-Voltage Differential Probe	ADP300
1 Ch, 100 MHz Differential Amplifier	DA1855A
with Precision Voltage Source	

*A wide variety of other passive, active, and differential probes are also available. Consult LeCroy for more information.

Customer Service

LeCroy oscilloscopes and probes are designed, built, and tested to ensure high reliability. In the unlikely event you experience difficulties, our digital oscilloscopes are fully warranted for three years, and our probes are warranted for one year.

This warranty includes: No charge for return shipping • Long-term 7-year support • Upgrade to latest software at no charge

OV 1-800-5-LeCroy www.lecroy.com **Local sales offices are located throughout the world. Visit our website to find the most convenient location.**

© 2010 by LeCroy Corporation. All rights reserved. Specifications, prices, availability, and delivery subject to change without notice. Product or brand names are trademarks or requested trademarks of their respective holders.

Product Code