

Spectrum Analyzer R&S FSU

The new high-end spectrum analyzer with unmatched performance

Features

Versatile resolution filters

Gaussian, FFT, channel, RRC

Comprehensive test routines

- TOI, OBW, CCDF
- Channel power, ACPR
- ACPR in time domain

Full choice of detectors

 Auto Peak, Max Peak, Min Peak, Sample, RMS, Average, Quasi Peak

Optional electronic attenuator

GSM/EDGE

Code domain power for 3GPP

Speed

- Fast ACP test routine in time domain
- User-configurable list for fast measurements at frequencies of interest
- Up to 60 measurements/s in time domain via IEC/IEEE bus (including trace data transfer)

Unmatched performance

Unmatched dynamic range

- ◆ TOI typ. +25 dBm
- 1 dB compression +13 dBm
- Phase noise
 typ. -123 dBc/Hz at 10 kHz offset
 typ. -160 dBc/Hz at 10 MHz offset
- Excellent display linearity <0.1 dB
- 84 dB ACLR/3GPP with noise correction

Milestones

The name Rohde & Schwarz has been synonymous with innovative spectrum analyzers since 1986, the unique features of which have repeatedly set standards in this technology. Examples are the analyzers of the R&S FSE and R&S FSIQ families

The Spectrum Analyzer R&S FSU is another milestone. New circuit concepts, advanced RF components, A/D converters and ASIC technology, extensive experience gained from a variety of applications and customer requirements - all this combines to form a solid basis on which the R&S FSU was developed. Its unparalleled features enable the use of new test methods – to your advantage. The future-oriented concept combines unprecedented performance with continuity. The R&S FSU is compatible with the R&S FSE and R&S FSIQ, the industry standards to date. Test routines and sequences generated for the R&S FSE or R&S FSIQ can be used on the R&S FSU too. The R&S FSU family thus secures your investment.

The operating concept of the top analyzer R&S FSU is the same as that of the general-purpose analyzer R&S FSP, so these instruments offer a uniform platform for a variety of applications.

The R&S FSU family

R&S FSU3	20 Hz to 3.6 GHz
R&S FSU8	20 Hz to 8 GHz
R&S FSU 26	20 Hz to 26 GHz

Rohde&Schwarz innovation in spectrum analyzers

1986 **R&S FSA** – first colour display, first spectrum analyzer to feature –154 dBm (6 Hz) displayed average noise level without the use of preamplifiers, quasi-continuously variable resolution bandwidths, phase noise optimization

1995 **R&S FSE** – fastest analyzer

1996 **R&S FSE** – first spectrum analyzer with RMS detector

1997 **R&S FSE-B7** — universal vector signal analysis and spectrum analyzer capability combined for the first time

1998 **R&S FSIQ** – first analyzer offering 75 dB dynamic range for UMTS/WCDMA ACLR measurements

1999 **R&S FSP** – 0.5 dB total measurement uncertainty as standard, fast ACP test routines in time domain, digital channel filters, CCDF

2000 **R&S FSP-B25** – first electronic attenuator for wear-free use in production

2001 **R&S FSU** – 0.3 dB total measurement uncertainty, 50 MHz resolution bandwidth, +25 dBm TOI

Performance surpassing all expectations

R&S FSU – ideal for signals requiring wide dynamic range

The R&S FSU even surpasses the proven excellent RF data of the R&S FSE and R&S FSIQ families. Measurements calling for an extremely wide dynamic range become even simpler, faster and more reliable — in development, quality management and production. The R&S FSU can rightly be called the new reference in spectrum analysis, with an unprecedented dynamic range:

- ◆ TOI >20 dBm, typ. +25 dBm
- 1 dB compression
 (0 dB RF attenuation): +13 dBm
- Displayed average noise level:
 -158 dBm (1 Hz bandwidth)
- 77 dB ACLR typ. for 3GPP,
 84 dB typ. with noise correction
- ◆ HSOI 55 dBm typ.
- Phase noise: –160 dBc/Hz typ. at 10 MHz carrier offset

These characteristics make it easy to find small spurious signals even in the presence of strong carriers (e.g. at a base station).

For 3GPP adjacent-channel power measurements, a figure of 84 dB ACLR allows good adjacent-channel power ratios to be verified and demonstrated very simply and with high accuracy. Build your node B better than others, and prove it.

The high harmonic second-order intercept point means optimum dynamic range for multichannel cable TV measurements.

Wealth of functions

The R&S FSU is launched with the most abundant functionality available on the spectrum analyzer market. All major functions come straight away in the basic unit:

Highly selective digital filters from 10 Hz to 100 kHz Fast FFT filters from 1 Hz to 30 kHz Channel filters from 100 Hz to 5 MHz RRC filters

1 Hz to 50 MHz resolution bandwidth

QP detector and EMI bandwidths 200 Hz, 9 kHz,

2.5 ms sweep time in frequency domain 1 µs sweep time in time domain

Number of measurement points/trace selectable between 155 and 10001

Time-selective spectrum analysis with gating function

GPIB interface, IEEE 488.2

RS-232-C serial interface, 9-pin SUB-D connector VGA output, 15-pin SUB-D

PC-compatible screenshots on diskette or hard disk Up to 20 measurements/s in manual mode Up to 30 measurements/s on GPIB interface SCPI-compatible GPIB command set R&S FSE/R&S FSIQ-compatible GPIB command set Fast ACP measurement in time domain Statistical signal analysis with CCDF function RMS detector of 100 dB dynamic range

Transducer factor for correcting antenna or cable frequency responses

2-year calibration cycle

3-year warranty1)

External reference from 1 MHz to 20 MHz in 1 Hz

GSM/EDGE modulation measurements (with option R&S FS-K5)

Except parts subject to wear and tear (e.g. attenuators)

Ready today for tomorrow

Functions like

- CCDF analysis
- Fast ACP measurement in time domain
- RMS detector
- Selection of filter characteristic
- Recording and readout of up to 2 x 512 ksamples of IQ data (8 MHz RF bandwidth)
- High measurement accuracy
- Excellent display linearity and features like 50 MHz bandwidth mean that the R&S FSU is ready now for tomorrow's needs.

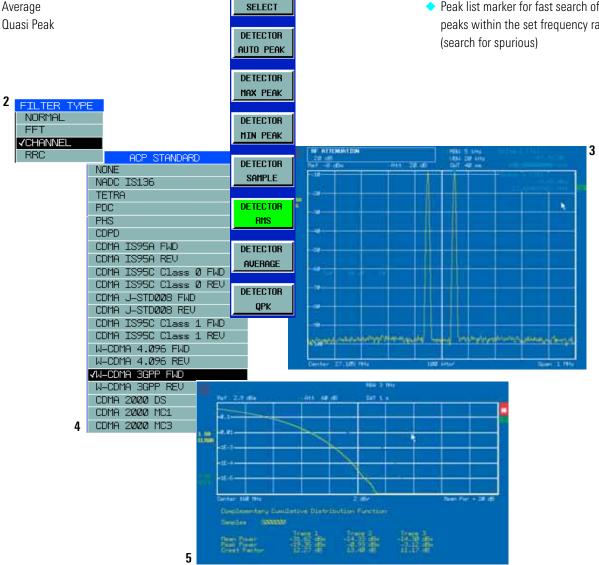
Shorter development cycles through versatile functions

To handle the wide variety of measurement tasks in product development, an instrument must offer ample functionality and excellent performance in all areas of interest. The R&S FSU fully meets these requirements.

Full choice of detectors for adaptation to a wide range of signal types (Fig. 1):

- RMS
- Auto Peak
- Max Peak
- Min Peak
- Sample
- Average
- Quasi Peak

The most versatile resolution filter characteristics and largest bandwidth found in a spectrum analyzer:

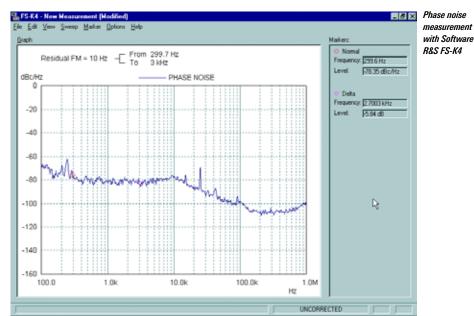

- Standard resolution filters from 10 Hz to 50 MHz in steps of 1, 2, 3, 5
- FFT filters from 1 Hz to 30 kHz
- 32 channel filters with bandwidth from 100 Hz to 5 MHz
- RRC filters for NADC and TETRA
- EMI filters: 200 Hz, 9 kHz, 120 kHz

AUTO

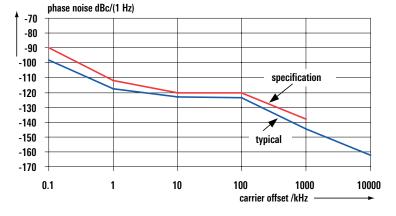
1

Full range of analysis functions:

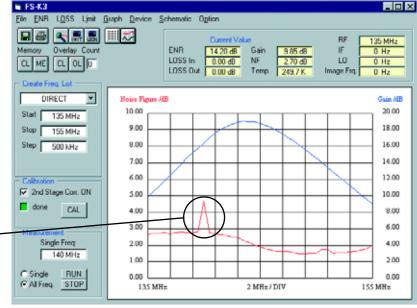
- Time-domain power in conjunction with channel or RRC filters makes the R&S FSU a fully-fledged channel power meter (Fig. 2)
- TOI marker (Fig. 3)
- Noise/phase-noise marker
- Versatile channel/adjacent-channel power measurement functions with wide selection of standards, user-configurable (Fig. 4)
- Split-screen mode with selectable settings
- CCDF measurement function (Fig. 5)
- Peak list marker for fast search of all peaks within the set frequency range



...wide dynamic range and future-proof performance


Whether in synthesizer development or front-end design, additional applications add to the R&S FSU functionality while user-friendliness is maintained:

Phase Noise Measurement Software R&S FS-K4 automates measurement over a complete offset frequency range and determines residual FM from the phase noise characteristic. This in conjunction with the R&S FSU's extremely low phase noise generally does away with the need for an extra phase noise measurement system, which can be difficult to operate anyway.

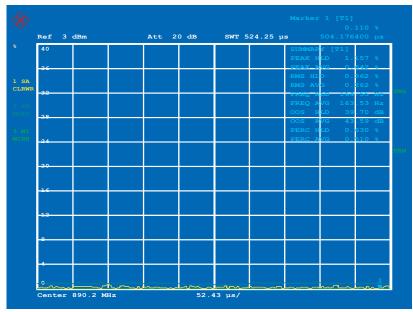

Noise Measurement Software **R&S FS-K3** is a convenient way to determine the noise figure of amplifiers and frequency-converting UUTs throughout the R&S FSU's frequency range, so enabling complete documentation. The high linearity and extremely accurate power measurement routines of the R&S FSU deliver precise and reproducible results. So why bother with a noise figure meter.

Noise figure measurement with Software R&S FS-K3

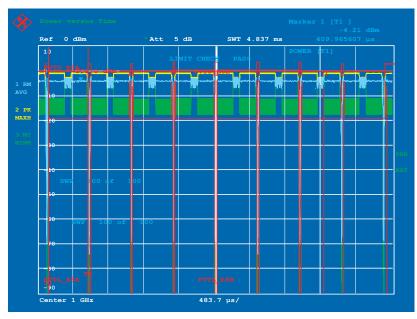
Fast and simple analysis of anomalies: the cause – spurious or RFI – can easily be traced with the basic analyzer function without additional — measuring equipment

From GSM to UMTS...

From GSM to UMTS – ready for 3G mobile radio


In conjunction with GSM/EDGE Application Firmware **R&S FS-K5**, the R&S FSU offers complete functionality for RF and modulation measurements in GSM systems. EDGE, which is the generation 2.5, is already included in the R&S FS-K5 option.

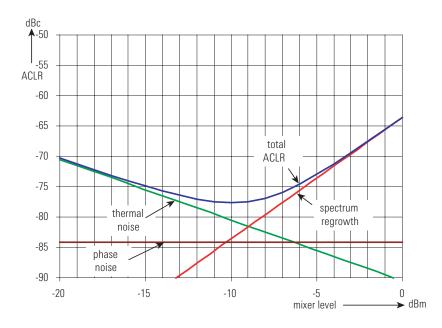
- Phase/frequency error for GSM
- Modulation accuracy for EDGE with:
 - EVM and ETSI-conformant weighting filters
 - 00S
 - 95:th percentile
 - Power versus time with synchronization to midamble
 - Spectrum due to modulation
 - Spectrum due to transients


The above features plus wide dynamic range make the R&S FSU an ideal tool in base station development and testing. This is enhanced by excellent characteristics ready incorporated in the standard unit, e.g. <0.3 dB total measurement uncertainty, gated sweep and IF power trigger.

Even in its basic version, the R&S FSU offers the functionality and characteristics needed to develop, verify and produce 3G mobile radio systems:

 RMS detector, provided as standard in Rohde&Schwarz analyzers for many years and allowing accurate power measurements independently of signal form; 3GPP specifications stipulate RMS power measurements for most tests

Measurement of modulation accuracy on EDGE burst


Measurement of power ramp on EDGE burst

...ready for 3G mobile radio

- ACP measurement function for 3GPP with 3.84 MHz bandwidth RRC filter for standard-conformant adjacentchannel power measurements with a dynamic range limit of 77.5 dB
- Dedicated CCDF measurement function that determines the probability of instantaneous signal power exceeding average power. CCDF measurement is indispensable to determine optimum transmit power for CDMA signals, assuming that clipping at known, short intervals is tolerable.

Standard 3GPP modulation and code domain power measurements

- For BTS/node B signals: Application Firmware R&S FS-K72
- For UE signals: Application Firmware R&S FS-K73
- High measurement speed of 4 s/measurement
- Code domain power and CPICH power
- EVM and PCDE
- Code domain power vs. slot
- EVM/code channel
- Spectrum emission mask

Dynamic range of R&S FSU for adjacent-channel power measurement on WCDMA signal without noise correction

WCDMA code domain power measurement with R&S FSU and R&S FS-K72

What can we do ...

Short test cycles, high throughput

The R&S FSU is just the right instrument for this. Fast data transfer on the IEC/IEEE bus or an Ethernet LAN plus intelligent routines optimized for speed make for very short measurement times:

- FAST ACP: for the major mobile radio standards with high reproducibility and accuracy
- List mode: combined measurement of various parameters at a single command
- Fast time domain power measurement using channel or RRC filters
- Up to 60 measurements/s in zero span via IEC/IEEE bus including trace data transfer
- Fast-sweeping FFT filters for spurious measurement at low levels
- Fast frequency counter: 0.1 Hz resolution for a measurement time of <30 ms

Downtime and repair time cut to a minimum

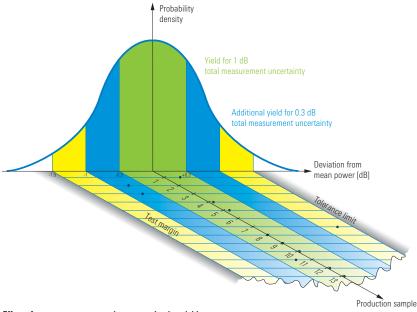
Limited lifetime of mechanical attenuators due to high throughput

The R&S FSU-B25 option solves this problem. The electronic attenuator with 25 dB setting range does away with any mechanical switching — so the R&S FSU's high accuracy is maintained without any early failure. A two-year calibration cycle minimizes downtime for instrument calibration.

Spurious emission measurements without notch filter

The R&S FSU is an ideal choice for this type of measurement, even for tests on GSM base stations. The extremely low phase noise and high 1 dB compression point of the R&S FSU enable direct measurements without the use of extra automatic or manually tuned notch filters. This eliminates possible sources of error and makes measurements simpler and more reliable.

Another step enhancing the reliability of your test system!


Existing programs for R&S FSE, R&S FSIO or R&S FSP can be used on R&S FSU

The R&S FSU complies with SCPI conventions and is IEC/IEEE-bus-compatible with respect to the R&S FSE and R&S FSIQ.

These instruments can in most cases be directly replaced with no or only minor changes to the software. If changes have to be made, they affect only those program parts that concern the speed-optimized measurement routines of the R&S FSU.

External frequency standards

The R&S FSU accepts signals between 1 MHz and 20 MHz in steps of 1 Hz.

Effect of measurement uncertainty on production yield

...to boost your production yield?


Higher production yield

Enhanced measurement accuracy makes for higher production yield. The safety margins that usually compensate for the measurement uncertainty of test systems can be reduced, so increasing the accept (passed) region. Given the same spread of results, more products will pass the test. The R&S FSU helps you boost your production yield featuring a total measurement uncertainty of <0.3 dB (2σ).

With 30 measurements/s in manual mode, minimum sweep time of 2.5 ms and 1 μ s zero span as standard, the R&S FSU is ideal for time-critical applications. The highly selective, fast-sweeping digital filters featuring "analog response" allow measurements on pulsed signals as well as use of the built-in frequency counter.

	Sweeps/s	Sweeps/s
	span 10 MHz,	span 0 Hz,
	sweep time 2.5 ms	sweep time 100 µs
ASCII format	30	40
Binary IEEE754 format	50	60

Measurement speed on GPIB interface Settings: display off, default coupling, single trace, 625 points

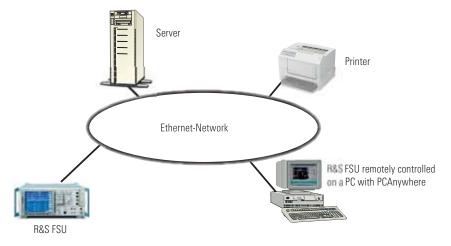
Measurement of adjacent-channel power versus time: FAST ACP

Remote control of R&S FSU via IEC/IEEE bus in list mode cuts down on measurement times

Profit from the advantages of networking

Versatile documentation and networking capabilities

The standard disk drive makes it easy for you to integrate results into documentation — simply save the screen contents as a BMP or WMF file and import them into your word processing system. To process trace data, save them as an ASCII file (CSV format), which not only documents trace data but also the main instrument settings.


Make use of the advantages offered by networking

The option **R&S FSU-B16** opens up versatile networking capabilities:

- Link to standard network (Ethernet 10/100BaseT)
- Running under Windows NT, the R&S FSU can be configured for network operation. Applications like data output to a central network printer or saving results on a central server can easily be implemented. The R&S FSU can thus be optimally matched to a given work environment.
- You can import screen contents straight into your documentation programs by Word for Windows or an MS Excel macro and so immediately create data sheets for your products or documents for quality assurance.

Remote control by Ethernet is even simpler:

- PCAnywhere software:
 PCAnywhere allows mouse operation
 of the R&S FSU after assigning it a
 TCP/IP address. All elements of the R&S
 FSU screen are represented by a soft
 front panel function; the complete R&S
 FSU screen shows on the remote PC.
- Special RSIB interface This links your application to the TCP/IP protocol and acts like an IEC/IEEE-bus driver. The RSIB interface is available for Windows and the UNIX world. The R&S FSU can be programmed via this interface just like on the familiar IEC/IEEE bus.

R&S FSU in networked operation

R&S FSU remotely controlled with PCAnywhere

Specifications

Specifications apply under the following conditions:

30 minutes warm-up time at ambient temperature, specified environmental conditions met, calibration cycle adhered to, and total calibration performed. Data without tolerances: typical values only.

Data designated "nominal" apply to design parameters and are not tested. Data designated " $\sigma=xx$ dB" are shown as standard deviation

	R&S FSU3	R&S FSU8	R&S FSU26
Frequency			
Frequency range			
DC coupled	20 Hz to 3.6 GHz	20 Hz to 8 GHz	20 Hz to 26.5 GHz
AC coupled	1 MHz to 3.6 GHz	1 MHz to 8 GHz	10 MHz to 26.5 GHz
Frequency resolution		0.01 Hz	
Internal reference fr	equency (nominal)		X0
Aging per day 1)		1 x 10 ⁻⁹	
Aging per year 1)		1 x 10 ⁻⁷	
Temperature drift		8 x 10 ⁻⁸	
$(0^{\circ}C \text{ to } +50^{\circ}C)$			
Total error (per year) 1)		1.8 x 10 ⁻⁷	
Internal reference fr	equency (nominal)		4
Aging per day 1)		2 x 10 ⁻¹⁰	
Aging per year 1)		3 x 10 ⁻⁸	
Temperature drift		1 x10 ⁻⁹	
$(0^{\circ}\text{C to } +50^{\circ}\text{C})$			
Total error (per year) 1)	5 x 10 ⁻⁸		
External reference	1 MHz to 20 MHz, 1 Hz steps		
frequency			
Frequency display	with marker or frequency counter		
Marker resolution	0.1 Hz to 10 kHz (dependent on span)		
Max. deviation	±(marker frequency x reference error + 0.5 % x span		
(sweep time $>3 x$	$+10 \%$ x resolution bandwidth $+ \frac{1}{2}$ (last digit))		
auto sweep time)			
Frequency counter	0.1 Hz to 10 kHz (selectable)		
resolution			
Count accuracy	±(frequency	x reference error +	½ (last digit))
(S/N > 25 dB)			
Frequency span	0 Hz,	0 Hz,	0 Hz,
	10 Hz to 3.6 GHz	10 Hz to 8 GHz	10 Hz to 26.5 GHz
Span resolution/		0.1 Hz/1 %	
max. span deviation			
Spectral purity (dBc	(1Hz)), SSB phase		Z
Residual FM		<1 Hz nominal	
Carrier offset) ': D0.0.E	C D4

max. span actiation		
Spectral purity (dBc(1Hz)), SSB phase noise, f = 640 MHz		
Residual FM	<1 Hz nominal	
Carrier offset		
10 Hz	typ. –73 dBc(1Hz), with option R&S FS-B4 typ. –86 dBc	
100 Hz	<-90 dBc(1Hz), typ100 dBc(1Hz)	
1 kHz	<-112 dBc(1Hz), typ116 dBc(1Hz)	
10 kHz	<-120 dBc(1Hz), typ123 dBc(1Hz)	
100 kHz	<-120 dBc(1Hz), typ123 dBc(1Hz)	
1 MHz	<-138 dBc(1Hz), typ144 dBc(1Hz)	
10 MHz	<-155 dBc(1Hz) nominal, typ160 dBc(1Hz)	
Sweep		
Span 0 Hz	1 µs to 16000 s in steps of 5%	
Span ≥10 Hz	2.5 ms to 16000 s in steps ≤10%	
Max. deviation of	3%	
sweep time		
Sampling rate	31.25 ns (32 MHz A/D converter)	
Measurement in	with marker and display lines (resolution 31.25 ns)	
time domain		

D 14: 1 1:1	R&S FSU3	R&S FSU8	R&S FSU26
Resolution bandwid	ths		
Analog filters 3 dB bandwidths	10 Uz to 20 N	MHz in 1/2/3/5 segu	onco EO MUz
Bandwidth error	10 HZ to 20 N	inz III 1/2/3/5 sequi	erice, ou ivinz
10 Hz to 100 kHz		<3%	
200 kHz to 5 MHz		<10%	
10 MHz, 20 MHz		-30% to + 10%	
50 MHz	-30% to +10%		6 for f<3.6 GHz
00 101112	00/0 to 1 10/0		% for f>3.6 GHz
Shape factor -60 dB:	: –3 dB	00/0 to 1 100/	0 101 12 0.0 0112
≤100 kHz		<6	
200 kHz to 2 MHz		<12	
3 MHz to 10 MHz		<7	
20 MHz, 50 MHz		<6 nominal	
Video bandwidths	1 Hz to 1	10 MHz in 1/2/3/5 s	equence
FFT filters			
3 dB bandwidths	1 Hz to	30 kHz in 1/2/3/5 se	equence
Bandwidth error		<5% nominal	
Shape factor		<3 nominal	
−60 dB: −3 dB			
EMI filters	I 0	00 11- 0 141- 120 11	la
6 dB bandwidths	2	00 Hz, 9 kHz, 120 kF <3% nominal	12
Bandwidth error		<3% nominal	
Shape factor -60 dB: -3 dB		<0 HUIHIHAI	
Channel filters			
Bandwidths	1	00, 200, 300, 500 H	7
Danawiatiis		3.4, 4, 4.5, 5, 6, 8.5,	•
		1, 24.3 (RRC), 25, 30	
	10, 10 (11110), 20, 2	200, 300, 500 kHz,	, 00, 100, 100, 102,
	1.	1.228, 1.5, 2, 3, 5 M	Hz
Shape factor	-,	<2 nominal	
-60 dB : −3 dB			
Bandwidth error		2% nominal	
Level			
Display range		average noise level	to 30 dBm
Maximum input leve	el		
DC voltage		50 V	
(AC coupling)		0.1/	
DC voltage		0 V	
(DC coupling)			
RF attenuation 0 dB	l I	20 dDm / 0.1 \/\\	
CW RF power		20 dBm (= 0.1 W) 97 dBµV/1 MHz	
Pulse spectral density RF attenuation ≥10		37 ubµ v/ 1 lviñZ	
CW RF power	u.b	30 dBm (= 1 W)	
Max. pulse voltage		150 V	
Max. pulse energy		1 mWs	
(10 µs)		-	
1 dB compression	+13 dBm nominal	+13 dBm nomin	al up to 3.6 GHz
of input mixer	-	+10 dBm nominal	+7 dBm nominal
(0 dB RF attenua-		from 3.6 GHz	from 3.6 GHz
tion)		to 8 GHz	to 26 GHz
Intermodulation			
Third-order intermode			
Third-order inter-	>17 dBm,	>17 dBm,	>17 dBm,
cept (TOI), level 2 x	typ. 20 dBm	typ. 20 dBm	typ. 20 dBm
−10 dBm,	for f = 10 MHz to	for f = 10 MHz to	for f = 10 MHz to
$\Delta f > 5 \times RBW \text{ or}$	300 MHz	300 MHz	300 MHz
10 kHz, whichever is	>+20 dBm,	>+20 dBm,	>+22 dBm,
the greater value	typ.+25 dBm	typ.+25 dBm	typ.+27 dBm
	for f >300 MHz	for f = 300 MHz	for f = 300 MHz
		to 3.6 GHz	to 3.6 GHz
		>+18 dBm,	>+12 dBm,
		typ.+23 dBm	typ. +15 dBm
		for f = 3.6 GHz	for f = 3.6 GHz
		to 8 GHz	to 26.5 GHz

¹⁾ After 30 days of continuous operation.

	R&S FSU3	R&S FSU8	R&S FSU26
Second harmonic inte		1100 1 00 0	1140 1 00 20
f _{in} ≤100 MHz		>35 dBm	
100 MHz <f<sub>in</f<sub>	>	45 dBm, typ. 55 dB	m
≤400 MHz	ı	, c, p. 00 ub	
400 MHz< f _{in} ≤500 Hz		-52 dBm, typ. 60 dB	m
$\frac{400 \text{ NHz} < f_{in} \leq 300 \text{ Hz}}{500 \text{ MHz} < f_{in} \leq 1 \text{ GHz}}$		-45 dBm, typ. 55 dB	
$\frac{1 \text{ GHz} < f_{in} \le 1.8 \text{ GHz}}{1 \text{ GHz}}$		>35 dBm	
$f_{in} > 1.8 \text{ GHz}$	_		n nominal
Displayed average n	nisa laval	>00 dbii	THOMINA
(0 dB RF attenuation,		RO Hz. 20 averages	trace average
span 0 Hz, terminatio		50 112, 20 averages,	tidoc dvorago,
Frequency	11 00 12)		
20 Hz	Í	<-80 dBm	
100 Hz		<-100 dBm	
1 kHz		<-110 dBm	
10 kHz		<-120 dBm	
100 kHz		<-120 dBm	
1 MHz		<-130 dBm	
10 MHz to 2 GHz	<-145 dBm t	typ. –148 dBm	<-142 dBm.
.0 141112 10 2 0112	\ 170 ubill, t	., p. 110 00111	typ. –146 dBm
2 GHz to 3.6 GHz	<-143 dBm,	<-143 dBm,	<-140 dBm,
2 0112 10 0.0 0112	typ. —147 dBm	typ. –145 dBm	typ. –143 dBm
3.6 GHz to 7 GHz	<-142 dBm.	<-142 dBm.	- 140 ubili
J.U GITZ TO / GITZ	<-142 dBIII, typ146 dBm	<-142 dBm, typ144 dBm	
7 GHz to 8 GHz	тур 140 ubili —	<-140 dBm	_
3.6 GHz to 8 GHz		_ 140 ubili	142 dBm,
3.0 0112 to 0 0112			typ. –146 dBm
8 GHz to 13 GHz	_	_	<-140 dBm.
0 0112 10 13 0112	_	_	typ. –143 dBm
13 GHz to 18 GHz			<-138 dBm.
13 0112 10 10 0112	_	_	,
18 GHz to 22 GHz			typ141 dBm <-137 dBm,
10 002 10 22 002	_	_	
22 GHz to 26.5 GHz			typ140 dBm <-135 dBm.
22 0112 to 20.3 0112	_	_	
Maximum dynamic	rango		typ138 dBm
1 dB compression to	lungo	170 dB	
DANL (1 Hz)		170 00	
Immunity to interfer	ence		
Image frequency	0.1.00		
f ≤ 3.6 GHz		>90 dB, typ. >110 d	В
f >3.6 GHz			yp. 100 dB
Intermediate frequen		> 10 db, t	yp. 100 db
f ≤ 3.6 GHz	CV		
I ≥ 3.0 (1Π/		>90 dB, tvn. >110 d	В
		>90 dB, typ. >110 d	
3.6 GHz ≤f ≤4.2 GHz		typ.	70 dB
3.6 GHz \leq f \leq 4.2 GHz f > 4.2 GHz		typ.	
3.6 GHz ≤f ≤4.2 GHz f > 4.2 GHz Spurious responses		typ. >70 dB, t	70 dB
3.6 GHz \leq f \leq 4.2 GHz f $>$ 4.2 GHz Spurious responses (f $>$ 1 MHz, without		typ. >70 dB, t	70 dB
3.6 GHz \leq f \leq 4.2 GHz f $>$ 4.2 GHz Spurious responses (f $>$ 1 MHz, without input signal, 0 dB		typ. >70 dB, t	70 dB
3.6 GHz \leq f \leq 4.2 GHz f $>$ 4.2 GHz Spurious responses (f $>$ 1 MHz, without input signal, 0 dB attenuation)	_	typ. >70 dB, t	70 dB
3.6 GHz ≤f ≤4.2 GHz f > 4.2 GHz Spurious responses (f > 1 MHz, without input signal, 0 dB attenuation) Other spurious (∆f>1		typ. >70 dB, t <-103 dBm	70 dB yp. >90 dB
3.6 GHz ≤ f ≤ 4.2 GHz f > 4.2 GHz Spurious responses (f > 1 MHz, without input signal, 0 dB attenuation) Other spurious (Δ f>1 f_{in} < 2.3 GHz	00 kHz) <-80 d	typ. >70 dB, t <−103 dBm	70 dB yp. >90 dB 10 dBm)
3.6 GHz ≤f ≤4.2 GHz f > 4.2 GHz Spurious responses (f > 1 MHz, without input signal, 0 dB attenuation) Other spurious (Δ f>1 f _{in} < 2.3 GHz 2.3 GHz ≤ f _{in} <4 GHz	00 kHz) <-80 d	typ. >70 dB, t <−103 dBm Bc (mixer level ≤ − Bc (mixer level ≤ −	70 dB yp. >90 dB 10 dBm) 35 dBm)
3.6 GHz ≤f ≤4.2 GHz f > 4.2 GHz Spurious responses (f > 1 MHz, without input signal, 0 dB attenuation) Other spurious (Δ f>1 f _{in} < 2.3 GHz 2.3 GHz≤ f _{in} < 4 GHz 4 GHz≤f _{in} < 26.5 GHz	00 kHz) <-80 d <-70 d <-80 d	typ. >70 dB, t <−103 dBm	70 dB yp. >90 dB 10 dBm) 35 dBm)
3.6 GHz ≤f ≤4.2 GHz f > 4.2 GHz Spurious responses (f > 1 MHz, without input signal, 0 dB attenuation) Other spurious (Δ f>1 f _{in} < 2.3 GHz 2.3 GHz ≤ f _{in} <4 GHz	00 kHz) <-80 d <-80 d rum mode)	typ. >70 dB, t <—103 dBm Bc (mixer level ≤ — Bc (mixer level ≤ — Bc (mixer level ≤ —	70 dB yp. >90 dB 10 dBm) 35 dBm) 10 dBm)
3.6 GHz ≤f ≤4.2 GHz f > 4.2 GHz Spurious responses (f > 1 MHz, without input signal, 0 dB attenuation) Other spurious (Δ f>1 f_{in} < 2.3 GHz 2.3 GHz 4 GHz ≤ f_{in} < 4 GHz 4 GHz ≤ f_{in} < 26.5 GHz Level display (specti	00 kHz) <-80 d <-70 d <-80 d rum mode) 625 x 500 pixels	typ. >70 dB, t <—103 dBm Bc (mixer level ≤ — Bc (mixer level ≤ — Bc (mixer level ≤ — (one diagram), max	70 dB yp. >90 dB 10 dBm) 35 dBm) 10 dBm)
3.6 GHz ≤f ≤4.2 GHz f > 4.2 GHz Spurious responses (f > 1 MHz, without input signal, 0 dB attenuation) Other spurious (Δ f>1 f_{in} < 2.3 GHz 2.3 GHz≤ f_{in} < 4 GHz Level display (specting Screen)	00 kHz) <-80 d <-70 d <-80 d rum mode) 625 x 500 pixels i	typ. >70 dB, t <—103 dBm Bc (mixer level ≤— Bc (mixer level ≤— Bc (mixer level ≤— (one diagram), max ndependent setting	70 dB yp. >90 dB 10 dBm) 35 dBm) 10 dBm) . 2 diagrams with
3.6 GHz ≤f ≤4.2 GHz f > 4.2 GHz Spurious responses (f > 1 MHz, without input signal, 0 dB attenuation) Other spurious (Δ f>1 f_{in} < 2.3 GHz 2.3 GHz 4 GHz≤ f_{in} < 4 GHz Level display (spect) Screen	00 kHz) <-80 d <-70 d <-80 d rum mode) 625 x 500 pixels i	typ. >70 dB, t <—103 dBm Bc (mixer level ≤ — Bc (mixer level ≤ — Bc (mixer level ≤ — (one diagram), max	70 dB yp. >90 dB 10 dBm) 35 dBm) 10 dBm) . 2 diagrams with
$3.6 \ \text{GHz} \le f \le 4.2 \ \text{GHz}$ $f > 4.2 \ \text{GHz}$ Spurious responses $(f > 1 \ \text{MHz}, \text{ without}$ input signal, $0 \ \text{dB}$ attenuation) Other spurious $(\Delta f > 1 \ \text{f}_{\text{in}} < 2.3 \ \text{GHz}$ $2.3 \ \text{GHz} \le f_{\text{in}} < 4 \ \text{GHz}$ Level display (specti Screen Logarithmic level axis	00 kHz) <-80 d <-70 d <-80 d rum mode) 625 x 500 pixels i 1 dB, 10 d	typ. >70 dB, t <-103 dBm Bc (mixer level ≤ Bc (mixer level ≤ Bc (mixer level ≤ (one diagram), max ndependent setting B to 200 dB in step	70 dB yp. >90 dB 10 dBm) 35 dBm) 10 dBm) . 2 diagrams with ss of 10 dB
3.6 GHz ≤f ≤4.2 GHz f > 4.2 GHz Spurious responses (f > 1 MHz, without input signal, 0 dB attenuation) Other spurious (Δ f>1 f_{in} < 2.3 GHz 2.3 GHz 4 GHz≤ f_{in} < 4 GHz Level display (spect) Screen	00 kHz) <-80 d <-70 d <-80 d rum mode) 625 x 500 pixels i 1 dB, 10 d	typ. >70 dB, t <—103 dBm Bc (mixer level ≤— Bc (mixer level ≤— Bc (mixer level ≤— (one diagram), max ndependent setting B to 200 dB in step level per level divisi	70 dB yp. >90 dB 10 dBm) 35 dBm) 10 dBm) . 2 diagrams with is s of 10 dB on, 10 divisions or
$3.6 \ \text{GHz} \le f \le 4.2 \ \text{GHz}$ $f > 4.2 \ \text{GHz}$ Spurious responses $(f > 1 \ \text{MHz}, \text{ without}$ input signal, $0 \ \text{dB}$ attenuation) Other spurious $(\Delta f > 1 \ \text{f}_{\text{in}} < 2.3 \ \text{GHz}$ $2.3 \ \text{GHz} \le f_{\text{in}} < 4 \ \text{GHz}$ $4 \ \text{GHz} \le f_{\text{in}} < 26.5 \ \text{GHz}$ Level display (spection of the spurious continuous) Logarithmic level axis Linear level axis	00 kHz) <-80 d <-70 d <-80 d rum mode) 625 x 500 pixels i 1 dB, 10 c	typ. >70 dB, t <—103 dBm Bc (mixer level ≤— Bc (mixer level ≤— Bc (mixer level ≤— Cone diagram), max ndependent setting B to 200 dB in step level per level divisi logarithmic scaling	70 dB yp. >90 dB 10 dBm) 35 dBm) 10 dBm) . 2 diagrams with is s of 10 dB on, 10 divisions or
$3.6 \ \text{GHz} \le f \le 4.2 \ \text{GHz}$ $f > 4.2 \ \text{GHz}$ Spurious responses $(f > 1 \ \text{MHz}, \text{ without}$ input signal, $0 \ \text{dB}$ attenuation) Other spurious $(\Delta f > 1 \ \text{f}_{\text{in}} < 2.3 \ \text{GHz}$ $2.3 \ \text{GHz} \le f_{\text{in}} < 4 \ \text{GHz}$ $4 \ \text{GHz} \le f_{\text{in}} < 2.5 \ \text{GHz}$ Level display (spection of the spurious) Logarithmic level axis Linear level axis Traces	00 kHz) -80 d -70 d -80 d rum mode) 625 x 500 pixels 1 dB, 10 c 10% of reference max. 6, with two d	typ. >70 dB, t <—103 dBm Sec (mixer level ≤ — Bc (mixer leve	70 dB yp. >90 dB 10 dBm) 35 dBm) 10 dBm) 10 dBm) 0 dBm) on, 10 divisions or max. 3 per diagram
$3.6 \ \text{GHz} \le f \le 4.2 \ \text{GHz}$ $f > 4.2 \ \text{GHz}$ Spurious responses $(f > 1 \ \text{MHz}, \text{ without}$ input signal, $0 \ \text{dB}$ attenuation) Other spurious $(\Delta f > 1 \ \text{f}_{\text{in}} < 2.3 \ \text{GHz}$ $2.3 \ \text{GHz} \le f_{\text{in}} < 4 \ \text{GHz}$ $4 \ \text{GHz} \le f_{\text{in}} < 26.5 \ \text{GHz}$ Level display (spection of the spurious continuous) Logarithmic level axis Linear level axis	00 kHz) <-80 d <-70 d <-80 d rum mode) 625 x 500 pixels i 1 dB, 10 c 10% of reference max. 6, with two d Max Peak, Min Pe	typ. >70 dB, t <-103 dBm Bc (mixer level ≤ - Bc (mixer level ≤ - Bc (mixer level ≤ - Cone diagram), max ndependent setting B to 200 dB in step level per level divisi logarithmic scaling iagrams on screen ak, Auto Peak (norm	70 dB yp. >90 dB 10 dBm) 35 dBm) 10 dBm) 2 diagrams with s s of 10 dB on, 10 divisions or max. 3 per diagram nal), Sample, RMS,
$3.6 \ \text{GHz} \le f \le 4.2 \ \text{GHz}$ $f > 4.2 \ \text{GHz}$ $5 > 4.2 \ \text{GHz}$ Spurious responses $(f > 1 \ \text{MHz}, \text{ without}$ input signal, $0 \ \text{dB}$ attenuation) Other spurious ($\Delta f > 1$ $f_{\text{in}} < 2.3 \ \text{GHz}$ $2.3 \ \text{GHz} \le f_{\text{in}} < 4 \ \text{GHz}$ $4 \ \text{GHz} \le f_{\text{in}} < 26.5 \ \text{GHz}$ Level display (spection of the spurious) Constituting the special series of th	00 kHz) -80 d -70 d -80 d rum mode) 625 x 500 pixels 1 dB, 10 c 10% of reference max. 6, with two d Max Peak, Min Pe	typ. >70 dB, t <-103 dBm Bc (mixer level ≤ - Bc (mixer level ≤	70 dB yp. >90 dB 10 dBm) 35 dBm) 10 dBm) - 2 diagrams with is s of 10 dB on, 10 divisions or max. 3 per diagram nal), Sample, RMS,
3.6 GHz ≤f ≤4.2 GHz f > 4.2 GHz f > 4.2 GHz Spurious responses (f > 1 MHz, without input signal, 0 dB attenuation) Other spurious (Δ f>1 f_m < 2.3 GHz f_m < 4 GHz 4 GHz ≤f f_m < 6.5 GHz Level display (spection Screen Logarithmic level axis Linear level axis Traces Trace detector	00 kHz) -80 d -70 d -80 d rum mode) 625 x 500 pixels 1 dB, 10 d 10% of reference max. 6, with two d Max Peak, Min Pe	typ. >70 dB, t <-103 dBm Bc (mixer level ≤ B	70 dB yp. >90 dB 10 dBm) 35 dBm) 10 dBm) - 2 diagrams with is s of 10 dB on, 10 divisions or max. 3 per diagram nal), Sample, RMS, k
$3.6 \ \text{GHz} \le f \le 4.2 \ \text{GHz}$ $f > 4.2 \ \text{GHz}$ $5 > 4.2 \ \text{GHz}$ Spurious responses $(f > 1 \ \text{MHz}, \text{ without}$ input signal, $0 \ \text{dB}$ attenuation) Other spurious ($\Delta f > 1$ $f_{\text{in}} < 2.3 \ \text{GHz}$ $2.3 \ \text{GHz} \le f_{\text{in}} < 4 \ \text{GHz}$ $4 \ \text{GHz} \le f_{\text{in}} < 26.5 \ \text{GHz}$ Level display (spection of the spurious) Constituting the special series of th	00 kHz) <-80 d <-70 d <-80 d rum mode) 625 x 500 pixels i 1 dB, 10 c 10% of reference max. 6, with two d Max Peak, Min Pe Clear/Write 625, setta	typ. >70 dB, t <-103 dBm Bc (mixer level ≤ - Bc (mixer level ≤	70 dB yp. >90 dB 10 dBm) 35 dBm) 10 dBm) . 2 diagrams with s of 10 dB on, 10 divisions or max. 3 per diagram nal), Sample, RMS, k old, Average nd 100001

C-44:	R&S FSU3	R&S FSU8	R&S FSU26
Setting range of refe Logarithmic level	_120 dPm +a / - E	dBm + RF attenuat	ion) may 20 dDm
display	-130 ubili to (+3	in steps of 0.1 dB	iuii), iiiax. 30 ubiii,
Linear level display	7 N n	V to 7.07 V in steps	of 1%
Units of level axis		nV, dBµA, dBpW (Ic	
		mA, pW, nW (linear	
Level measurement	error	0.07	
Reference error at		$<0.2 (\sigma = 0.07) dB$	
128 MHz, RBW			
≤100 kHz, reference level –30 dBm.			
RF attenuation 10 dB			
Frequency response (DC counling RF att	renuation > 10 dR)	
10 MHz to 3.6 GHz		$< 0.3 \text{ dB} (\sigma = 0.1 \text{ dB})$	11)
3.6 GHz to 8 GHz	_		$s = 0.5 \text{ dB})^{2}$
8 GHz to 22 GHz	_	-	<2 dB
			$(\sigma = 0.7 \text{ dB})^{2}$
22 GHz to 26.5 GHz	_	-	<2.5 dB
			$(\sigma = 0.8 \text{ dB})^{2)}$
Attenuator (≥5 dB)		$< 0.2 \text{ dB } (\sigma = 0.07 \text{ d})$,
Reference level	<	:0.15 dB ($\sigma = 0.05$ d	B)
switching			
Display nonlinearity		xer level ≤–10 dBm)
Logarithmic level di			
RBW \leq 100 kHz, S/N : 0 dB to -70 dB		.0.1 dD/= 0.00 dl	D).
-70 dB to -90 dB		<0.1 dB (σ = 0.03 dl <0.3 dB (σ = 0.1 dE	•
$\frac{-70 \text{ dB to } -30 \text{ dB}}{10 \text{ MHz} \ge \text{RBW} \ge 20}$		<0.5 db (O = 0.1 db))
0 dB to -50 dB		$< 0.2 \text{ dB } (\sigma = 0.07 \text{ d})$	RI
-50 dB to -70 dB		$< 0.5 \text{ dB } (\sigma = 0.17 \text{ dB})$	
RBW ≥ 10 MHz		10.0 42 (0 0.17 42	1
0 dB to -50 dB	<	$< 0.5 \text{ dB } (\sigma = 0.17 \text{ d})$	B)
Linear level display	ĺ	% of reference lev	el
Bandwidth switchin	g error (ref. to RB	W = 10 kHz)	
10 Hz to 100 kHz		-	
200 kHz to 10 MHz		<0.2 dB ($\sigma = 0.07$ dl	•
5 MHz to 50 MHz		$< 0.5 \text{ dB } (\sigma = 0.15 \text{ d})$	
FFT 1 Hz to 3 kHz		$< 0.2 \text{ dB } (\sigma = 0.07 \text{ d})$	В)
Total measurement		/ .100 0E 0/ aanfid	anaa lavall
(0 dB to -70 dB, S/N (20 °C to 30 °C, mixe		/ < 100, 95 % comin	ence level)
<3.6 GHz		B dB for RBW ≤ 100	ĿH ₇
<3.0 d112		$6 \text{ dB for RBW} \le 100$	····=
3.6 GHz to 8 GHz	_		0 dB
8 GHz to 18 GHz	_	-	<2.5 dB
18 GHz to 26.5 GHz	_	-	<3.0 dB
Audio demodulation)n		
Modulation modes		AM and FM	
Audio output	loudspe	aker and headphone	es output
Marker hold time in		100 ms to 60 s	
spectrum mode			
Trigger functions			
Trigger			
Span ≥10 Hz			1 1 00 ID 1
Trigger source		ternal, IF level (mixe	
Trigger offset	125 NS TO TUU S, re	esolution 125 ns mir	n. (or 1 % or orrset)
Span = 0 Hz Trigger source	free run video es	ternal, IF level (mixe	ar lovel >_20 dBm\
Trigger offset		o 100 s, resolution 1	
mgger onset		pendent on sweep t	
Max. deviation of		ns + (0.1 % x delay	
trigger offset	± (120	7110 1 (0.1 70 % 4614)	, timoji
Gated sweep			
Trigger source	е	xternal, IF level, vid	90
Gate delay		1 µs to 100 s	
Gate length	125 ns to 100 s,	resolution min. 125	ns or 1 % of gate
		length	
Max. deviation of	±(125	ns + (0.05 % x gate	length))
gate length			

	R&S FSU3	R&S FSU8	R&S FSU26
Inputs and outputs	s (front panel)		
RF input		N female, 50 Ω	
VSWR; RF attenuatio	n ≥10 dB, DC coupl		
f <3.6 GHz f <8 GHz		<1.5 <2.0	<1.8
f < 18 GHz		<2.0	<1.8
f < 26.5 GHz		_	<1.0
RF attenuation	_	typ. 1.5	\2.0
<10 dB or AC		тур. 1.5	
coupling			
Setting range of	ΛΛ	B to 75 dB in 5 dB st	ens
attenuator	0 u	D to 75 dD III 5 dD 5	юро
Probe power supply	+15 V DC -12 6 V	DC and ground ma	x 150 mA nominal
Power supply for		5-pin connector	
antennas			
Supply voltages	±10 V and	ground, max. 100 n	nA nominal
Keyboard			
Keyboard connector	PS/2	female for MF2 key	board
AF output			
AF output		3.5 mm mini jack	
Output impedance		10 Ω	
Open-circuit voltage	U	ıp to 1.5 V, adjustab	е
Inputs and outputs	s (rear panel)		
IF 20.4 MHz	Z	$_{\mathrm{ut}} = 50 \ \Omega$, BNC fema	ale
Bandwidth	U	-	
RBW ≤ 100 kHz	1.5 x resol	lution bandwidth, m	in. 2.6 kHz
10 MHz ≥ RBW ≥	same	as resolution band	width
200 kHz			
Level			
RBW ≤ 100 kHz, FFT	–20 dBm at ref	erence level, mixer l	evel >-70 dBm
10 MHz≥RBW≥	0 dBm at refe	rence level, mixer le	vel >-50 dBm
200 kHz			
IF 404.4 MHz	Z _o	$_{\rm ut}$ = 50 Ω , BNC fema	ale
	404.4 MHz IF o	output active only if	RBW >10 MHz
Bandwidth			
RBW > 10 MHz	same as resolution bandwidth		
Level			
Mixer level ≤ 0 dBm		IB typ., only active if	
Video output		$_{ m ut}$ = 50 Ω , BNC fema	
Voltage	0 V to 1 V, full scale (open-circuit voltage), logarithmic		
(RBW ≥200 kHz)		scaling	
Reference frequency	1	2010	
Output		BNC female	
Output frequency		10 MHz	
Level		>0 dBm nominal	
Input	4 8 41	BNC female	atana
Input frequency	I MH	Iz to 20 MHz in 1 Hz	steps
range		. 0 dDm f F0 O	
Required level	DNIO (I O	>0 dBm from 50Ω	1. 1. 1
Sweep output	BINU temale, U	V to 5 V, proportion	ai to displayed
Dower ourselv oor	DNIC f	frequency ale, 0 V and 28 V, sv	uitababla
Power supply con- nector for noise	DIVE TEM		vitciiable,
		max. 100 mA	
Source		DNC fomala 1016	,
External trigger/		BNC female, >10 k c	4
gate input		1.4.1/	
Trigger voltage	inta-f-	1.4 V	100 21
IEC/IEEE-bus	interfa	ce to IEC 625-2 (IEEE	400.2)
remote control		CCDI 1007 0	
Command set	0.4	SCPI 1997.0	-1-
Connector		I-pin Amphenol fema	
Interface functions		S, L4, SR1, RL1, PP1,	
Serial interface		C (COM), 9-pin SUB-	
D	parallel (Centronics-compatible)		
	Penen		
Printer interface Mouse connector		PS/2 female	

1)	Valid for temperatures between $+20$ °C and $+30$ °C; <0.6 dB for temperatures between $+5$ °C
	and +45°C.

²⁾ Valid for temperatures between +20 °C and +30 °C and span <1 GHz; add < 0.5 dB for temperatures between +5 °C and +45 °C or span >1 GHz.

General data			
Display	21 cm TFT LCD colour display (8.4")		
Resolution	800 x 600 pixels (SVGA resolution)		
Pixel failure rate	<1 x	10 ⁻⁵	
Mass memory	1.44 Mbyte 3½" d	isk drive, hard disk	
Data storage	>500 instrument s	settings and traces	
Operating temperature	range		
Rated temperature	+5 °C to	+40 °C	
range			
Limit temperature	+0 °C to) +50 °C	
range			
Storage temperature	−40 °C t	o +70 °C	
range			
Damp heat		e humidity (IEC 68–2–3)	
Mechanical resistance			
Vibration , sinusoidal		t 55 Hz; 0.5 g from 55 Hz to	
	150 Hz; meets IEC 68-2-6, IEC 68-2-3, IEC 1010-1,		
	MIL-T-28800D, class 5		
Vibration, random	10 Hz to 100 Hz, acceleration 1 g (rms) 40 g shock spectrum, meets MIL-STD-810C		
Shock test			
Recommended		D, classes 3 and 5	
calibration interval	2 years for operation with external reference,		
	1 year with internal reference		
RFI suppression	meets EMC directive of EU (89/336/EEC) and German EMC law		
Dower ounnly	German Eivic law		
Power supply AC supply	100 \/ AC += 240 \/ AC 2.1	A to 1.3 A, 50 Hz to 400 Hz,	
AC supply		ion I to VDE 411	
Power consumption	typ. 130 VA	typ. 150 VA	
Safety	/ 1	1-1, CSA C22.2 No. 1010-1,	
Jaicty	· ·	010-1	
Test mark		A, CSA-NRTL	
Dimensions	435 mm x 192 mm	435 mm x 192 mm	
(W x H x D)	x 460 mm	x 460 mm	
Weight	14.6 kg	15.4 kg	
	1 I.O Ng	10.1 kg	

Optional Extended Environmental Specification R&S FSU-B20

Temperature range (without condensation)		
Rated temperature range	0°C to +50°C	
Limit temperature range	0°C to +55°C	
Mechanical resistance		
Vibration, random	10 Hz to 300 Hz, acceleration 1.9 g (rms)	

Optional Electronic Attenuator R&S FSU-B25

Frequency		
Frequency range		
R&S FSU 3	10 MHz to 3.6 GHz	
R&S FSU 8	10 MHz to 8 GHz	
R&S FSU 26	10 MHz to 3.6 GHz	
Setting range		
Electronic attenuator	0 dB to 30 dB, 5 dB steps	
Preamplifier	20 dB, switchable	
Maximum level measurement error		
Frequency response, with preamplifier or electronic attenuator		
10 MHz to 50 MHz	<1 dB	
50 MHz to 3.6 GHz	<0.6 dB	
3.6 GHz to 8 GHz	<2.0 dB	
Reference error at 128 MHz, RBW ≤100 kHz, reference level –30 dBm,		
RF attenuation 10 dB		
Electronic attenuator	<0.3 dB	
Preamplifier	<0.3 dB	

Displayed average noise level			
RBW=1 kHz, VBW=3 kHz, zero span, sweep time 50 ms, 20 averages, mean			
marker, normalized to 10 Hz RBW			
Preamplifier on			
10 MHz to 2.0 GHz	<-152 dBm		
2.0 GHz to 3.6 GHz	<-150 dBm		
3.6 GHz to 8.0 GHz	<-147 dBm		
With the R&S FSU-B25 built in, the average noise level values displayed by the			
basic units degrade by (R&S FSU-B25 off):			
20 Hz to 3.6 GHz	1 dB		
3.6 GHz to 8 GHz	2 dB		
Preamplifier off, electronic attenuator 0 dB			
20 Hz to 3.6 GHz	typ. 2.5 dB		
3.6 GHz to 8 GHz	typ. 3.5 dB		
Intermodulation			
Third-order intermodulation, third-order intercept (TOI), electronic attenuator on,			
$\Delta f > 5 x RBW or 10 kHz$			
10 MHz to 300 MHz	>17 dBm		
300 MHz to 3.6 GHz	>20 dBm		
3.6 GHz to 8 GHz	>18 dBm		

Ordering information

Order designation	Туре	Order No.
Spectrum Analyzer 20 Hz to 3.6 GHz	R&S FSU3	1129.9003.03
Spectrum Analyzer 20 Hz to 8 GHz	R&S FSU8	1129.9003.08
Spectrum Analyzer 20 Hz to 26.5 GHz	R&S FSU 26	1129.9003.26

Accessories supplied

Power cable, operating manual, service manual; R&S FSU 26: test port adapter with 3.5 mm female (1021.0512.00) and N female (1021.0535.00) connector

Options

Order designation	Туре	Order No.
Options		
Delete Manual	R&S FSU-B0	1144.9998.02
Highly Accurate Reference Frequency	R&S FSU-B4	1144.9000.02
External Generator Control	R&S FSP-B10	1129.7246.02
LAN Interface100BT	R&S FSU-B16	1144.9498.02
Removable Hard Disk	R&S FSU-B18 ^{1) 2)}	1145.0242.02
Second Hard Disk for FSU-B18	R&S FSU-B19 ²⁾	1145.0394.02
Extended Environmental Specification	R&S FSU-B20 ³⁾	1155.1606.04
Electronic Attenuator, 0 dB to 30 dB,	R&S FSU-B25	1144.9298.02
with integrated 20 dB preamplifier		
Software		
Noise Measurement Software	R&S FS-K3	1057.3028.02
Phase Noise Measurement Software	R&S FS-K4	1108.0088.02
GSM/EDGE Application Firmware	R&S FS-K5	1141.1496.02
FM Measurement Demodulator	R&S FS-K7	1141.1796.02
3GPP BTS/Node B FDD Application	R&S FS-K72	1154.7000.02
Firmware		
Service Kit	R&S FSU-Z1	1145.0042.02

- 1) Factory installation only.
- 2) Not with R&S FSU-B20.
- 3) Not with R&S FSU-B18/-B19.

Recommended extras

necommended extras				
Туре	Order No.			
R&S FSE-Z15	1046.2002.02			
_	0708.9010.00			
R&S PSP-Z2	1091.4100.02			
R&S FSE-Z2	1084.7043.02			
R&S PMC3	1082.6004.04			
R&S PCK	0292.2013.10			
R&S PCK	0292.2013.20			
R&S ZZA-411	1096.3283.00			
R&S ZZA-T45	1109.3774.00			
Matching Pads, 75 Ω				
R&S RAM	0358.5414.02			
R&S RAZ	0358.5714.02			
R&S ZRB2	0373.9017.52			
R&S ZRC	1039.9492.52			
High-Power Attenuators, 100 W,				
R&S RBU 100	1073.8820.XX			
	(XX=03/06/10/20/30)			
High-Power Attenuators, 50 W				
R&S RBU 50	1073.8895.XX			
	(XX=03/06/10/20/ 30)			
R&S RDL 50	1035.1700.52			
	R&S FSE-Z15 R&S PSP-Z2 R&S FSE-Z2 R&S PMC3 R&S PCK R&S PCK R&S ZZA-411 R&S ZZA-411 R&S ZZA-T45 R&S RAM R&S RAZ R&S ZRB2 R&S ZRC R&S RBU 100			

Certified Environmental System ISO 14001

Certified Quality System

SO 9001

DOS REG. NO 1954

