
# **Frequency Standards**

FS725 — Benchtop rubidium frequency standard



### 10 MHz and 5 MHz outputs

- 1 pps input and output for GPS synchronization
- 20 year aging less than 0.005 ppm
- Ultra-low phase noise (<-130 dBc/Hz at 10 Hz)</li>
- Built-in distribution amplifiers
  (up to 22 outputs)
- RS-232 computer interface
- Two status alarm relays

## FS725 Rubidium Frequency Standard —

The FS725 integrates a rubidium oscillator (SRS model PRS10), a low-noise AC power supply, and distribution amplifiers in a compact, half-width 2U chassis. It provides stable and reliable performance with an estimated 20 year aging of less than  $5 \times 10^{-9}$ , and a demonstrated rubidium oscillator MTBF of over 200,000 hours. The FS725 is an ideal instrument for calibration and R&D laboratories, or any application requiring a precision frequency standard.

There are two 10 MHz and one 5 MHz outputs with exceptionally low phase noise (-130 dBc/Hz at 10 Hz offset) and one second Allan variance ( $<2 \times 10^{-11}$ ). The FS725 can be phase-locked to an external 1 pps reference (like GPS) providing Stratum 1 performance. A 1 pps output is also provided that has less than 1 ns of jitter, and may be set with 1 ns resolution.

Up to three internal distribution modules can be added to the FS725. Each module has four 10 MHz outputs, one 5 MHz output, and one 1 pps output, all with the same low phase noise, harmonic distortion and jitter.

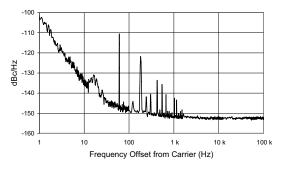
An RS-232 interface allows direct communication with the rubidium oscillator. Using the provided Windows software, you can easily monitor and control 1 pps timing, and determine the instrument's operational status.

There are two alarm relays that indicate the status of the rubidium oscillator lock state and synchronization to an external 1 pps input. The relays are SPDT, providing both normally-open and normally-closed contacts.



• FS725 .... \$2695 (U.S. list)

phone: (408)744-9040 www.thinkSRS.com


#### Output

Output frequencies

Amplitude 1 pps pulse amplitude Phase noise (SSB)

10 MHz sine, 5 MHz sine, 10 µs wide 1 pps pulse 0.5 Vrms, ±10% 2.5 V into  $50 \Omega$ , 5 V into High-Z loads <-130 dBc/Hz (10 Hz) <-140 dBc/Hz (100 Hz)  $<-150 \, \text{dBc/Hz} (1 \, \text{kHz})$ <-155 dBc/Hz (10 kHz)





| Spurious              | <-100 dBc (100 kHz BW)                                 |
|-----------------------|--------------------------------------------------------|
| Harmonics             | <-60 dBc                                               |
| Accuracy at shipment  | $\pm 5 \times 10^{-11}$                                |
| Aging (after 30 days) | $<5 \times 10^{-11}$ (monthly)                         |
|                       | $<5 \times 10^{-10}$ (yearly)                          |
|                       | $5 \times 10^{-9}$ (20 years, typ.)                    |
| Short-term stability  | $<2 \times 10^{-11} (1 s)$                             |
| (Allan variance)      | $<1 \times 10^{-11} (10 \text{ s})$                    |
|                       | $<2 \times 10^{-12}$ (100 s)                           |
| Holdover              | 72 hour Stratum 1 level $(1 \times 10^{-11})$          |
| Frequency retrace     | $\pm 5 \times 10^{-11}$ (72 hrs. off, then 72 hrs. on) |
| Settability           | $<5 \times 10^{-12}$                                   |
| Trim range            | $\pm 2 \times 10^{-9}$ (0 to 5 VDC)                    |
|                       | ±0.5 ppm (via RS-232)                                  |
| Warm-up time          | <6 minutes (time to lock)                              |
|                       | $<7$ minutes (time to $1 \times 10^{-9}$ )             |

#### Front-Panel Indicators (Green LEDs)

| Power       | "On" when AC power is applied             |
|-------------|-------------------------------------------|
| Locked      | "On" when frequency is locked to Rb       |
| 1 pps input | Blinks with each 1 pps reference          |
|             | input applied to rear panel               |
| 1 pps sync  | "On" when 1 pps output is synchro-        |
|             | nized within $\pm 1 \mu s$ of 1 pps input |
| Receive     | Blinks when RS-232 characters             |
|             | are received by FS725                     |
| Send        | Blinks when RS-232 characters             |
|             | are sent by FS725                         |

#### **Rear-Panel Connections**

| Frequency adjust | 0 to 5 VDC adjusts frequency by                 |
|------------------|-------------------------------------------------|
|                  | $\pm 0.002 \text{ ppm}$ (normally unconnected)  |
| 1 pps input      | One $100 \mathrm{k}\Omega$ input. Requires CMOS |
|                  | level pulses (0 to 5 VDC). If an                |

|                  | ······································    |
|------------------|-------------------------------------------|
|                  | is maintained between the 1 pps           |
|                  | input and 1 pps output, with              |
|                  | computer adjustable time constant         |
|                  | from 8 minutes to 18 hours.               |
| 10 MHz outputs   | Two 50 $\Omega$ isolated sine outputs     |
| 5 MHz output     | One 50 $\Omega$ sine output               |
| 1 pps output     | One 50 $\Omega$ pulse output              |
| Optional outputs | Each option board provides four           |
|                  | 10 MHz, one 5 MHz, and one 1 pps          |
|                  | outputs. Up to 3 boards can be installed. |
| Alarm relays     | Max. current, 3 A. SPDT, normally         |
|                  | open or normally closed. May be           |
|                  | wired in parallel with other relays to    |
|                  | "wire-or" a single alarm.                 |
| Rb lock          | Relay status matches the front-panel      |
|                  | "Locked" LED.                             |
| 1 pps            | Relay status matches the front-panel      |
|                  | "1 pps sync" LED.                         |
| RS-232           | 9-pin connector configured as DCE,        |
|                  | 9600 baud. Windows RbMon                  |
|                  | software is provided.                     |
|                  |                                           |

external 1 pps input is applied, lock

#### Environmental

| Operating temperature | +10 °C to +40 °C                                                                     |
|-----------------------|--------------------------------------------------------------------------------------|
| Temperature stability | $\Delta f/f < \pm 1 \times 10^{-10} (\pm 10 ^{\circ}C \text{ to } \pm 40 ^{\circ}C)$ |
| Storage temperature   | -55 °C to +85 °C                                                                     |
| Magnetic field        | $\Delta f/f < 2 \times 10^{-10}$ (1 Gauss field reversal)                            |
| Relative humidity     | 95% (non-condensing)                                                                 |
|                       |                                                                                      |

#### General

| AC power           | 90 to 132 VAC or 175 to 264 VAC,    |
|--------------------|-------------------------------------|
|                    | 47 to 63 Hz, 50 W                   |
| Dimensions, weight | 8.5" × 3.5" × 13" (WHL), 9 lbs.     |
| Warranty           | One year parts and labor on defects |
|                    | in materials and workmanship        |

## **Ordering Information**

| FS725     | Benchtop Rb frequency standard      | \$2695 |
|-----------|-------------------------------------|--------|
| Option 01 | Distribution amplifier (6 outputs)  | \$400  |
| Option 02 | Distribution amplifier (12 outputs) | \$800  |
| Option 03 | Distribution amplifier (18 outputs) | \$1200 |
| O725RMD   | Double rack mount kit               | \$100  |
| O725RMS   | Single rack mount kit               | \$100  |



FS725 rear panel (with Opt. 03)



phone: (408)744-9040 www.thinkSRS.com