Agilent Technologies Infiniium 90000 Series Oscilloscopes Data Sheet **Engineered for unmatched real-time measurement accuracy** # Why choose Agilent oscilloscopes for your toughest high-speed measurement challenges? As an engineer you're no stranger to tough challenges that help you to deliver high standards and meet your customer's needs better than anyone else can. But deploying your next design successfully is even more difficult when you're incorporating today's high-speed technologies. Signal eyes become smaller, and measurement error from your oscilloscope becomes less tolerable. Agilent is committed to providing the best measurement solutions for those tough challenges. The Agilent Infiniium 90000 Series oscilloscopes are engineered to give you unmatched real-time measurement accuracy so you can: - Use your jitter budget in your design, not on your oscilloscope. - 2. Pass today's demanding compliance tests more quickly. - 3. Debug your toughest designs with confidence. ## 90000A Series Infiniium oscilloscopes | Model | Real-time
bandwidth on 4 ch | Maximum sampling rate on 4 ch | Standard memory | Maximum
memory | Noise floor at
100 mV/div | |--------|--------------------------------|-------------------------------|-----------------|-------------------|------------------------------| | 91304A | 13 GHz | 40 GSa/s on 4 ch | 20 Mpts on 4 ch | 1 Gpts on 4 ch | 3.37 mVrms | | 91204A | 12 GHz | 40 GSa/s on 4 ch | 20 Mpts on 4 ch | 1 Gpts on 4 ch | 2.80 mVrms | | 90804A | 8 GHz | 40 GSa/s on 4 ch | 20 Mpts on 4 ch | 1 Gpts on 4 ch | 2.22 mVrms | | 90604A | 6 GHz | 20 GSa/s on 4 ch* | 20 Mpts on 4 ch | 1 Gpts on 4 ch | 1.92 mVrms | | 90404A | 4 GHz | 20 GSa/s on 4 ch* | 20 Mpts on 4 ch | 1 Gpts on 4 ch | 1.56 mVrms | | 90254A | 2.5 GHz | 20 GSa/s on 4 ch* | 20 Mpts on 4 ch | 1 Gpts on 4 ch | 1.27 mVrms | ^{*}DSA model numbers come standard with 50 Mpts of memory on 4 ch. ## How much time span can I capture? | Sampling Rate | 20 Mpts of memory | 50 Mpts of memory | 100 Mpts of memory | 200 Mpts of memory | 500 Mpts of memory | 1 Gpts of memory | |---------------|-------------------|-------------------|--------------------|--------------------|--------------------|------------------| | 40 GSa/s | 500 µs | 1.25 ms | 2.5 ms | 5.0 ms | 12.5 ms | 25.0 ms | | 20 GSa/s | 1 ms | 2.5 ms | 5.0 ms | 10.0 ms | 25.0 ms | 50.0 ms | Note: time span capture = memory depth x 1/ sampling rate ## How can Agilent say we have unmatched real-time measurement accuracy? It's a bold claim to state that Agilent has unmatched real-time measurement accuracy when there are scopes with higher bandwidths available. But for many of today's existing and emerging applications it's true. Accurate jitter measurements depend on accurate representation of the signal under test to determine the precise point at which the signal crosses a defined threshold. This figure illustrates the two major characteristics that impact a jitter measurement. - Oscilloscope Bandwidth: The first is bandwidth, which fundamentally allows the signal rise time to be accurately represented thus impacting the precise positioning of the threshold point. - 2. Oscilloscope Noise Floor: The second is the inherent noise of the oscilloscope which impacts the accuracy of the measured voltage level and the precise determination of the signal threshold point. This discussion specifically refers to the hardware characteristics of the oscilloscope. The measurement accuracy of the oscilloscope is a direct result of the interplay of these factors. You can see how this impacts actual measurements in the following comparison. For our measurements, all of our scopes had adequate bandwidth to represent the 40 ps rise time accurately. You can see total jitter decreasing with bandwidth on the Tek scope, but the results are clearly dominated by the impact of the oscilloscope noise floor. When your signal speeds and rise times can be adequately represented with lower oscilloscope bandwidth, which is true for most data rates today, it pays to carefully weigh your purchase decision. Investing more money for incremental bandwidth to the detriment of measurement accuracy may have unexpected impact to your design schedule # Total Jitter (ps) PRBS7 8 Gbps 65 60 45 40 7 Tek 12G Tek 13G Tek 16G Tek 20G 13G 86100C DCA-J Notice that regardless of the bandwidth of the Tektronix oscilloscope, Agilent measures lower Tj than Tektronix. Agilent - **Tektronix** We compared Tektronix 70000B series oscilloscopes to Agilent 90000 series oscilloscopes with the 86100C DCA-J sampling scope measurement included as the "gold standard". Measurements were made using a Rosenburg SMA cable connection to a proprietary demo board that generates the compliance pattern. Agilent real-time scopes use EZJIT Plus software for jitter measurements, while Tek scopes use DPOJET software with interpolation on and high performance eye rendering off. Identical clock recovery algorithms were used. Use your jitter budget in your design, not on your oscilloscope. With the lowest noise floor in the industry, Agilent's Infiniium 90000 scopes offer the most accurate real-time jitter measurements available today on real-time oscilloscopes. Complete with full-bandwidth probing solutions and hardware-accelerated de-embedding and equalization techniques, Agilent oscilloscopes are the best oscilloscope solution for today's demanding high-speed measurements. #### The industry's lowest noise floor Leveraging the company expertise in RF design, Agilent has invested in key technology blocks like our proprietary Faraday caged front end to significantly reduce our inherent scope noise floor. ## The industry's deepest memory With 1 Gbyte of memory, lowfrequency jitter components can be more quickly resolved in a single measurement. Statistical accuracy is improved with more data collection. Agilent's integrated deep memory remains responsive and allows more comprehensive testing, supporting pattern lengths up to PRBS23 for accurate transmitter and receiver results. ## We add full bandwidth probing and accurate de-embedding and equalization software The performance of Agilent's oscilloscopes is matched by the superiority of our probing, de-embedding and equalization offerings. Maintain full bandwidth performance to the probe tip with our InfiniiMax probing solutions. Render waveforms anywhere in the digital serial link with our hardwareaccelerated N5465A InfiniiSim Waveform Transformation Toolset. Configurable system modeling allows you to remove the deleterious effects of unwanted channel elements, simulate waveforms with channel models inserted, view waveforms in physically unprobeable locations, and compensate for loading of probes and fixtures. The N5461A Serial Data Equalization software allows you to model equalization techniques in real time. Pass today's demanding compliance tests more quickly. Offering the industry's widest range of available compliance applications to provide fast setup for complete, automated compliance and margin testing and reporting, the Agilent 90000 Series scopes have become the go-to tool for test houses worldwide. Our experts serve on the industry standards committees, and our oscilloscopes are certified on today's fastest interfaces including SATA 6G, PCIe Gen 2.0, and USB 3.0. Plus our 1G memory supports real-time testing to pattern lengths of PRBS23 to stress your design to the max. New performance enhanced 90000 Series allows for even faster time to insight. # Choose from a wide range of complete compliance applications Choose from the industry's widest range of complete applications for the Infiniium 90000 Series to ensure compliance to the leading industry standards, including SATA, PCI Express®, Ethernet, USB, and more. Comprehensive set-up wizards and full automation of the required testing take the guesswork out of demonstrating compliance quickly. Get further insight with our protocol and analysis decode available on PCI Express, SATA and USB. # Put Agilent's experts on your team Agilent's measurement experts sit on the industry standards committees and help define the compliance requirements. They make sure our tools deliver exactly to the standards. You get the benefit of years of training and experience on every measurement you make. # Free up valuable engineering resources Set-up wizards combined with intelligent test filtering make it simple to ensure the right tests are being run. Comprehensive HTML reports with visual documentation and pass/fail results guarantee that critical information is retained on each test. Technicians can run complete and accurate testing on their own, freeing valuable engineering resources. #### **PrecisionProbe** Agilent's N2809A PrecisionProbe software quickly characterizes and compensates the frequency response of any path to the 90000 Series input. PrecisionProbe's patented technology uses the <15ps edge from the 90000 Series oscilloscope to: - Measure input impedance and response of any probe and the loss of any cable - Quickly correct from probe and cable loss(without extra instruments such as VNA or TDR) - Correct probing issues such as phase nonlinearity, magnitude non-flatness, and see the effect of probe loading - Quickly gain insight into impedance/capacitance that defines your connection Agilent's PrecisionProbe uses its 200 GHz indium phosphide process to create a fast edge for characterization with PrecisionProbe. Debug your toughest designs with confidence. The 90000 series boasts an ever-expanding set of measurement applications for serial debugging and protocol viewing, jitter testing, advanced triggering, measurement customization, and rapid automation. Put the power of the scope to work for your unique debug and analysis challenges. # Streamline your debug and analysis tasks with the industry's widest range of application software Whether you need to trigger and decode serial buses, iron out the kinks in your memory designs, or see FFT based
spectrum analysis of your signal, the Infiniium 90000 Series has application software to help. Our serial protocol views are unique to oscilloscopes, and our DDR debug tools support multiple generations of the standard. Quickly access additional features from the scope's standard menus. #### **Customize your scope for even more efficiency** The N5414B InfiniiScan Event Identification software makes unique capabilities like Zone Qualify and Generic Serial triggering possible. Rapidly automate any scope measurement using the N5467A User Defined Application and have it appear seamlessly in your scope's menu. Customize your Infiniium further by taking full advantage of MyInfiniium (standard on all 90000A Series oscilloscopes). Use MyInfiniium to deliver automated measurements, execute customized scripts, save screenshots, or load your favorite setup. ## Add measurement capability with MATLAB compatibility If we haven't provided exactly what you need, take customization to a new level with MATLAB (Option 062) - a data analysis software environment and scripting language with over 1,000,000 users today. Use MATLAB to design and apply your own filters to oscilloscope signals, graphically visualize oscilloscope signals in 2-D and 3-D plots, automate measurements, and build test applications. Add the N5430A User Defined Function software to your scope to seamlessly integrate your custom functionality into the Infiniium 90000 menus so results are displayed on the scope screen. Agilent is the only T&M manufacturer today that sells and supports MATLAB as its own product as part of a complete T&M solution. Debug your toughest designs with confidence. Trigger and view on-screen serial decode of I2C packets # I2C/SPI serial trigger and decode (N5391A or Option 007 on new scope purchases) Given even further insights with protocol decode capability. Quickly move between physical and protocol layer information using the time-correlated tracking marker. Display protocol content using waveform symbols and the industry's first multi-tab protocol viewer. The packets tab shows a high level view of the packet over time. ## **Frequency Domain Analysis** Infiniium built-FFT, allows users to quickly and easily analyze the frequency components of their signals. Both FFT magnitude and Phase can be displayed and can be combined with other built-in math functions or Matlab based measurements. A resolution bandwidth of 6kHz is supported with the standard 10 Megabytes of acquisition memory. With optional acquisition memory installed resolution bandwidths of 2kHz can be obtained. Standard windowing of Hanning, Flattop and Rectangular are supported along with cursor based power measurements. When more powerful frequency domain measurements are required including modulation analysis, consider the Agilent 89601A Vector Signal Analyzer software. #### **Hardware Accelerated Differential and Common Mode Math** Select the channel menu and enable differential mode to enable hardware accelerated math capability. Enjoy full channel functionality including InfiniiScan triggering and jitter analysis. Save time, by using the hardware acceleration for even faster update rates with your differential and common mode math needs. Conduct jitter analysis. #### EZJIT analysis software (E2681A or option 002 on new scope purchases) Quickly characterize and evaluate most commonly needed jitter measurements, including cycle-cycle, N-cycle, period, time-interval, error, setup and hold time, histograms, measurement trending and jitter spectrum. This application is supported on all models and is standard on DSA models. For more information: www.agilent.com/find/EZJIT Recover embedded clocks with serial data analysis (SDA). # High-speed serial data analysis software (E2688A or Option 003 on new scope purchases) Quickly validate signal integrity for high-speed serial interfaces with embedded clocks. Recover embedded clocks synchronized with the analog waveform view. Build and validate eye diagrams. The SDA package also includes software-based bit-level triggering and decode for 8B/10B. This application is supported on all models and comes standard on DSA models. For more information: www.agilent.com/find/SDA Analyze jitter plus RJ/DJ separation. # EZJIT Plus analysis software (N5400A or Option 004 on new scope purchases. To upgrade from EZJIT to EZJIT Plus, order N5401A.) EZJIT Plus adds additional compliance views and an expanded measurement setup wizard to simplify and automate RJ/DJ separation for testing against industry standards. This application is supported on all models and is standard on DSA models. For more information: www.agilent.com/find/EZJITPlus Quickly characterize and correct for any input to your oscilloscope #### PrecisionProbe software (N2909A or Option 001 on new scope purchases) # Make more accurate measurements independent of what probes or cables used. Agilent's N2908A PrecisionProbe software characterizes and corrects for the loss in your specific cable or probe. PrecisionProbe removes the uncertainty about the input your specific cable or probe. PrecisionProbe removes the uncertainty about the input connected to your oscilloscope by allowing you to see its characteristics in less than five minute. PrecisionProbe gives you design and debug confidence by allowing you to quickly de-embed probe and cable loss to make more accurate measurements. For more information: www.agilent.com/find/PrecisionProbe Identify signal integrity issues with InfiniiScan Zone – Qualify triggering. #### InfiniiScan event identification (N5414B or Option 009 on new scope purchases) Rapidly trigger on complex events and identify signal integrity issues. This innovative software quickly scans through thousands of acquired waveform cycles and isolates anomalous signal behavior. This application is supported on all models. For more information: www.agilent.com/find/infiniiScan Control your applications remotely. # Infiniium Remote Programming interface (N5452A or Option 011 on new scope purchases) Operate your Infiniium compliance and validation applications remotely using .NET languages. This application is supported on all models. For more information: www.agilent.com/find/RPI Reduce receiver errors by opening tightly shut eyes. #### Serial Data Equalization (N5461A or Option 012 on new scope purchases) Measure at the pin and use equalization to see a virtual eye on the other side of an equalizer. Model equalization techniques such as DFE, FFE, and CTLE. This application is supported on all models. For more information: www.agilent.com/find/SDE Model channel effects including reflection. # InfiniiSim Waveform Transformation Toolset (N5465A or option 013, and 014 on new scope purchases) Use the InfiniiSim toolset to combine measurements and models to view simulated scope measurement results at any location in your design. Import design models (s-parameters or transfer functions), acquire real-time scope data, and transform to measurement locations you need. This application is supported on all models. For more information: www.agilent.com/find/InfiniiSim Control your applications remotely. #### MATLAB® data analysis software (Option 061 or 062 on new scope purchases) MATLAB is a data analysis software environment and scripting language used by over 1,000,000 users in aerospace/defense, automotive, communications, electronics, and other applications. MATLAB is now available directly from Agilent as in instrument option with the purchase of your Agilent 90000 Series oscilloscope. Install MATLAB on your oscilloscope or remote PC to make customized measurements, design and apply your own filters to oscilloscope signals, graphically visualize signals in 2-D or 3-D plots, automate measurements, or build test applications. Purchase MATLAB with your Agilent 90000 Series oscilloscope to ensure version compatibility and so that your MATLAB software license is always available when you need it. For more information: www.agilent.com/find/matlab_oscilloscopes Quickly automate oscilloscope measurements. #### User-definable application (N5467A or Option 040 on new scope purchases) Rapidly develop your own automated measurements and tests. This application provides the framework you need to quickly program and automate any single or set of measurements the oscilloscope can make. The application also provides full control of other Agilent instruments and HTML reporting capabilities. For more information: www.agilent.com/find/UDA Signal equalization using user-defined function. #### User-defined function (N5430A or Option 010 on new scope purchases) If we haven't provided exactly what you need, use the N5430A User Defined Function software to create it yourself. Develop your own math functions or filters using MATLAB. Your custom functionality is seamlessly integrated into the Infiniium 90000 menus and results are displayed on the scope screen. This requires MATLAB (available as Option 062) to be installed directly on the oscilloscope. Agilent is the only T&M manufacturer today that sells and supports MATLAB as its own product. This application is supported on all models and requires MATLAB software (not included with UDF) For more information: www.agilent.com/find/UDF Use vector signal analysis software to see FFT-based spectrum analysis. #### Vector signal analysis software (89601A) Expand the measurement capability of your scope with the 89601A vector signal analysis software. This advanced DSP-based software takes the digitized signal data from the scope and displays FFT-based spectrum analysis and wide-bandwidth digital modulation analysis for wireless communication signals such as WCDMA and cdma2000 and wireless networking signals such as 802.11 WiFi and 802.16 WiMax. Take advantage of the super-wide bandwidth of your scope to capture and evaluate radar signals. For more information: www.agilent.com/find/VSA Trigger and view on-screen serial decode of l^2C packets. #### I^2C/SPI
serial trigger and decode (N5391A or Option 007 on new scope purchases) This application displays real-time time-aligned decode of I2C and SPI packets. View decode in waveform area or in protocol lister. This application works on all models. For more information: www.agilent.com/find/90000 I2C-SPI Trigger on and decode JTAG packets. # JTAG (IEEE 1149.1) triggering and decode (N8817A or Option 042 on new scope purchases) This application displays real-time time-aligned decode of JTAG (IEEE 1149.1) TDI and TDO signals. The application eliminates the difficult task of manually determining JTAG TAP controller states, instruction and data register decode, and flags error conditions. The application includes scan chain description features including the ability to import .bsdl files for each device and displays device names and opcodes in the protocol listing. This application works on all models and can use any combination of scope or logic acquisition channels. For more information: www.agilent.com/find/90000_JTAG Trigger on and decode RS-232/UART transmission. # RS-232/UART serial decode and trigger (N5462A or Option 015 on new scope purchases) This application eliminates the need to manually decode bus traffic. Using data captured on the scope channels, the application lets you easily view the information sent over an RS-232 Display real-time time-aligned decode of transmit and receive lines. This application works on all models. For more information: www.agilent.com/find/90000_RS-232 ## N8805A USB 3.0 Protocol Triggering and Decode (N8805A) Trigger on and view USB 3.0 with the industry's first oscilloscope-based protocol analyzer with time-correlated views of physical layer and transaction layer errors. The multi-tab protocol viewer includes correlation between the waveforms and the selected packet, enabling you to quickly move between the physical and protocol layer using the time-correlated tracking marker. For more information: www.agilent.com/find/usb3decode Isolate signal integrity problems from logic-level coding errors on bidirectional serial data streams. Trigger on and decode USB packets. # USB serial trigger and protocol viewer (N5464A or Option 016 on new scope purchases) Trigger on and quickly view USB 2.0 packets, payload, header and detail information. Powerful time-correlated views of waveform and symbol, to the bit level, make it easy to isolate communication faults. This application is supported on all models. For more information: www.agilent.com/find/90000 USB protocol viewer Trigger on and decode PCIe serial packets. # PCI Express $^{\circledR}$ serial trigger and protocol viewer (N5463A or Option 017 on new scope purchases) This application provides protocol-level triggering and viewing of a PCle® lane. Quickly view packets, payload, header, and detail information. Powerful time-correlated views of waveform, symbol, character, link and transaction layer packet data down to the bit level make it easy to isolate communication faults to logic or analog sources. This application is supported on all 4 GHz and greater models. For more information: www.agilent.com/find/90000_PCI_protocol_viewer Trigger on and decode SAS/SATA serial packets. #### SATA triggering and decode (N8801A or option 018 on new scope purchases) Trigger on and view both protocol layer information and physical layer signal characteristics for SATA 1.5 Gb/s, 3.0 Gb/s, and 6.0 Gb/s. Numerical decode values are automatically displayed and synchronizes below the capture signal or seen in protocol viewer. This application works on all models. For more information: www.agilent.com/find/N8801A Trigger on and decode MIPI packets. #### MIPI D-phy trigger and decode (N8802A or Option 019 on new scope purchases) This application eliminates the need to manually decode bus traffic. Using data captured on the scope, the application lets you easily view the information sent over MIPI serial buses. The application also enables software based protocol triggering. This application is supported on all models >=4 GHz bandwidth. For more information: www.agilent.com/find/N8802A Validate Ethernet compliance. ## Ethernet compliance testing (N5392A or Option 021 on new scope purchases) Perform a wide range of electrical tests for 10-, 100-, and 1000-Base-T systems. An N5395B or N5395C test fixture and N5396A jitter test cable speed compliance testing. This application is supported on all models. For more information: www.agilent.com/find/N5392A Quickly verify and debug your PCI EXPRESS® designs # PCI EXPRESS® Electrical Performance Validation and Compliance Software (N5393B or Option 022 on new scope purchases) Provides fast and easy way to verify and debug your PCI EXPRESS designs. Allows you to automatically execute PCI EXPRESS electrical checklist tests, and displays the results in a flexible report format. Ensures that your Gen2 measurements will have absolute consistency with measurements made using the PCI-SIG's standalone Sigtest software. This application is supported on all models >=8 GHz bandwidth. For more information: www.agilent.com/find/N5293B # Verify and debug your HDMI designs. # HDMI[™] Electrical Performance Validation and Compliance Software (N5399A or Option 023 on new scope purchases) Quickly verify and debug your High Definition Multi-media Interface (HDMI) designs. The N1080A fixture provides access to the compliance points for the electrical measurements required for the transmitter compliance testing. This application is support on all models >=8 GHz bandwidth. For more information: www.agilent.com/find/N5399A Characterize and evaluate the signal integrity of both your high speed FB-DIMM signals as well as your reference clock. # Fully Buffered DIMM Compliance Application (N5409A or Option 024 on new scope purchases) Quickly characterize and evaluate the signal integrity of both your high speed FB-DIMM signals as well as your reference clock. All tests are based on the JEDEC High Speed Point-to-Point Link Specification. This application is supported on all models >=10 GHz bandwidth For more information: www.agilent.com/find/N5409A Characterize and evaluate the signal integrity of your electrical Fibre-Channel devices #### Fibre Channel Compliance Application (N5410A or Option 025 on new scope purchases Quickly characterize and evaluate your electrical Fibre-Channel devices. Specify the measurement point at which you are probing your signal (delta, gamma, etc.). All tests performed are based on the FC-PH (ANSI X3.230-1994) and FC-PH-2 Fibre Channel - Physical and Signaling Interface specification. This application is supported on all models >=4 GHz bandwidth For more information: www.agilent.com/find/fibre-channel Simplify the validation of SATA designs #### SATA 6G Compliance Test Software (N5411B or Option 038 on new scope purchases) Rapidly validate and debug your SATA 1.5Gb/s (Gen 1), 3.0 Gb/s (Gen2) and 6.0 Gb/s (Gen3) silicon, host bus adapter, port multiplier, high-density disk drive, solid-state disk drive or optical disk drive. Provides automated compliance test support for the i (internal), m(eSATA) and x(SAS attachment) interfaces points, and displays the results in a flexible report format. This application is supported on all models >= 12 GHz bandwidth For more information: www.agilent.com/find/n5411b Full suite of DisplayPort source tests. # U7232A DisplayPort Compliance Test Software (U7232A or Option 028 on new scope purchases) Sets the benchmark for ease-of-use, and offers complete testing without compromise. The software guides the user sequentially through the tasks ensuring minimal setup error, executes the tests specified by the standard and conveys the test information through a convenient software generated report. The three modes of physical layer test allow for automated measurements based on the customizable configuration of compliance and characterization testing. To make the test signal connection, the Agilent W2641A DisplayPort test point access adaptor completes the DisplayPort source solution. The application is supported on all models >= 8 GHz For more information: www.agilent.com/find/U7232A Check for USB compliance #### USB 2.0 Compliance Test Software (N5416A or Option 029 on new scope purchases) Quickly determine USB compliance with this USB-IF recognized solution. A setup wizard guides you through test selection and configuration. This application is supported on all models. For more information: www.agilent.com/find/n5416a Perform automated testing and margin analysis for XAUI and XAUI-derived specifications # XAUI Electrical Validation with 10GBASE-CX4, CPRI, OBSAI, and Serial RapidIO Support (N5431A or Option 030 on new scope purchases) Improve your efficiency by confirming that your devices conform to the XAUI specifications as defined by the IEEE 802.3-2005 10-gigabit Ethernet specification. Provides support for the XAUI-derived 10GBASE-CX4 specification. The application is supported on all models For more information: www.agilent.com/find/N5431A Verify and debug your DVI designs more easily. # DVI Electrical Performance Validation & Compliance Software (N5394A or Option 034 on new scope purchases) Automatically execute DVI electrical checklist tests and display the results in a flexible report format. In addition to the measurement data, the report provides a margin analysis that shows how closely your device passed or failed each test. The application is supported on all models >= 4GHz For more information: www.agilent.com/find/90000 Automatically execute D-PHY electrical checklist tests for CSI and DSI architectures. # MIPI D-PHY Compliance Test Software (U7238A or Option 035 on new scope purchases) Automatically execute D-PHY electrical checklist tests for CSI and DSI architectures. Displays the results in a flexible report format. The application is supported on all models. For more information: www.agilent.com/find/d-phy compliance Automatically execute 10GBASE-T Ethernet
physical-layer (PHY) electrical tests # 10GBASE-T Ethernet Electrical Conformance Application for Infiniium Oscilloscopes (U7236A or Option 036 on new scope purchases) Takes care of the tedious task of instrument control and configures the oscilloscope, spectrum analyzer, or vector network analyzer as needed by each 10GBASE-T test to provide rapid, accurate, and repeatable test execution. The application is supported on all models. For more information: www.agilent.com/find/10gbase-t Validate and debug your USB 3.0 silicon, host, hub or device #### USB 3.0 Compliance Test Software (U7243A or Option 041 on new scope purchases Provides industry leading automated test support for USB 3.0 products and displays the test results in a comprehensive test report. For best measurement accuracy use the Agilent U7242A USB 3.0 transmitter and receiver test fixtures. Agilent's USB 3.0 test solution is designed from the ground up with the needs of the test engineer in mind. The application is supported on models >= 12 GHz For more information: www.agilent.com/find/USB3 Test DDR memory. # DDR1 and LPDDR/DDR2 and LPDDR2/DDR3 compliance testing (U7233A/N5413B/U7231A or Options 031/032/033 on new scope purchases) or N5459A Opt 001 for all memory applications Quickly and easily evaluate and characterize your memory designs. Automated testingbased on JEDEC specifications saves time. The application also includes additional debug and compliance capabilities. This application is supported on all models. However, the DDR technology you are using may dictate the minimal bandwidth required for your scope. For more information: www.agilent.com/find/DDR # **Agilent Infiniium portfolio** Agilent's Infiniium lineup includes 9000 and 90000A Series oscilloscopes. These share a number of advanced hardware and software technology blocks. Use the following selection guide to determine which best matches your specific needs. Lowest noise, highest bandwidth Widest range of applications. Biggest display plus thin depth | | 90000 Series | 9000 Series Oscilloscope | | |---------------------------|---|---|--| | Bandwidth | 2.5 GHz,4 GHz, 6 GHz | 8 GHz,12 GHz, 13 GHz | 600 MHz,1 GHz, 2.5 GHz, 4 GHz | | Bandwidth upgradability | • | • | • | | 50 Ω & 1 MΩ inputs | 50 Ω | 50 Ω* | Both | | MSO models | | | • | | Max 4-channel sample rate | 20 GSa/s | 40 GSa/s | 10 GSa/s | | Built-in GPIB available | Yes | Yes | N4865A adapter | | Rackmount
height | 7U | 7U | 8U | | Display size | 12.1" | 12.1" | 16" | | Footprint
(HxWxD) | 11.1 " x 17" x 19.9"
12.9 " x 16.8" x 9" | 11.1 " x 17" x 19.9"
12.9 " x 16.8" x 9" | 12.9 " x 16.8" x 9"
33 cm x 43 cm x 23 cm | $^{^{\}ast}$ 1 $M\Omega$ available by purchasing the E2697A ## **Infiniium 90000A Series** Click on the icon at the bottom left of the Infiniium screen to minimize the status and scales tab for full screen viewing. Maximize your viewing needs. Ever wanted to change the scale or offset of a function or waveform memory? If you have, you know that it requires multiple menus and key strokes. In Infiniium software version 2.01 and later, you can now map functions and waveform memories to the front panel controls of the oscilloscope! Starting with an **18-GHz, BNC-compatible connector**, an **ultra-low noise floor** front end design using **Faraday cage** technology ensures high signal integrity in its signal path. **AutoProbe interface** completely configures your scope for use with the InfiniiMax probing system and previous-generation Agilent active probes. Simply press the **horizontal delay knob** to set the delay value to zero. A **zoom button** provides quick access to two screen zoom mode. Dedicated **single acquisition button** provide better control to capture an unique event. Customizable **Multipurpose** key gives you any five automated measurements with a push of a button. You can also configure this key to execute a script, print/save screen shots, save waveforms, or load a favorite setup. Measure section including a toggling marker button and a dedicated marker knob provides quick access to your marker control. Quick access to fine/vernier control by pressing the horizontal and vertical sensitivity knobs. Increase your productivity with a familiar Infiniium graphical user interface, like your favorite drag-and-drop measurement icons. Infiniium's analog-like front panel has a full set of controls color coded to the waveforms and measurements, making your tasks simple. Optional USB external DVD-RW drive allows you to install your favorite third-party software conveniently and can be used to back up your critical measurement data. Install third-party software packages on Windows XP Pro operating system such as Excel, LabVIEW, Agilent VEE, MATLAB[®], anti-virus software, and more, to perform customized processing and automation of your oscilloscope or to make the scope compliant to the network environment of your company. # InfiniiMax II: The World's best high-speed probing system just keeps getting better InfiniiMax offers you the highest performance available for measuring differential and single-ended signals, with flexible connectivity solutions for today's high-density ICs and circuit boards. InfiniiMax probes have fully characterized performance for all of their various probe heads. This includes: - Swept frequency response plot - Common mode rejection versus frequency plot - Impedance versus frequency plot - Time-domain probe loading plot - Time-domain probe tracking plot **One-year standard warranty** on active probes and a variety of Agilent support options to choose from. **Controlled impedance transmission** lines in every probe head deliver full performance versus the performance limitations introduced by traditional wire accessories. Probe interface software allows you to save the calibration information for up to 10 different probe heads per channel and will automatically retrieve calibration data for a probe amplifier as it is attached to the scope. High-input impedance active probes minimize loading, support differential measurements and DC offset, and can compensate for cable loss. Probe calibration software delivers the most accurate probe measurements and linear phase response and allows various probe combinations to be deskewed to the same reference time. A flat frequency response over the entire probe bandwidth eliminates the distortion and frequency-dependent loading effects that are present in probes that have an in-band resonance. E2677A 12-GHz solder-in differential probe head can be attached to very-small-geometry circuits for measuring both single-ended and differential signals. External mini-coaxial resistors facilitate wider span but have increased high-frequency response variation relative to N5381A. #### E2679A 6-GHz extremely small single-ended, solder-in probe heads for probing even the hardest-to-reach single-ended signals. N5381A 13-GHz high-bandwidth solder-in differential probe head provides maximum bandwidth and minimizes capacitive loading to ≤ 210 fF. Variable spacing from 0.2 to 3.3 mm (8 to 130 mills). N5425A 13-GHz high-bandwidth solder-in differential ZIF probe head and N5426A ZIF tip provides maximum bandwidth with industry's first lead-free solder-in probe solution in an economical replaceable tip form factor. N5451A 9-GHz/5-GHz long-wire ZIF tip provides high-bandwidth economical replaceable solder-in tip with extra reach (9 GHz with 7 mm and 5 GHz with 11 mm wire). N5451A probe head allows you to connect two SMA cables to make a differential measurement on a single scope channel. Six different InfiniiMax probe amplifiers from 1.5 GHz to 13 GHz are available for matching your probing solution to your performance and budget requirements. The 1168/69A InfiniiMax II amplifiers offer the highest bandwidth and the lowest noise floors. The 1134/32/31/30A offer a more cost effective solution and wider dynamic range. #### N5382A 13-GHz high-bandwidth differential browser provides maximum bandwidth for hand-held or probe holder use. Variable spacing from 0.2 to 3.3 mm (8 to 130 mills). **E2675A 6-GHz differential browser** is the best choice for general-purpose trouble shooting of differential or single-ended signals with z-axis compliance and variable spacing from 0.25 - 5.80 mm (10 - 230 mills). **E2676A 6-GHz single-ended browser** is the best choice for general-purpose probing of single-ended signals when small size of the probe head is the primary consideration. #### E2678A 12-GHz differential socket probe head can be used to measure either differential or single-ended signals via a plug-on socket connection. N5380A 13-GHz high-bandwidth differential SMA probe head provides maximum bandwidth for SMA-fixtured differential pairs. N5450A InfiniiMax extreme temperature extension cable provides extra reach into environmental chambers. #### Probe performance plots available The InfiniiMax II probe manuals contain an extensive set of performance plots (bandwidth, probe tracking, CMRR, step response, impedance) for various probe configurations. See the following Web site for this information www.agilent.com/find/probes ## Performance characteristics #### Vertical | Input channels | Four | | | | | | | |--|--|--|--|---|---
---|--| | Analog bandwidth
(–3 dB)* ^{, 10} | 90254A
2.5 GHz | 90404A
4 GHz | 90604A
6 GHz | 90804A
8 GHz | 91204A
12 GHz | 91304A
12 GHz | | | DSP enhanced bandwidth ³ | 91304A: 13- | GHz real-time, us | er-selectable DSF | enhanced band | width | | | | Rise time/fall time ¹¹
10 - 90%
20 - 80% | 90254A
140 ps
105 ps | 90404A
105 ps
79 ps | 90604A
70 ps
53 ps | 90804A
54 ps
38 ps | 91204A
35 ps
25 ps | 91304A
32 ps
23 ps | | | Input impedance ¹² | 50 Ω, ± 3% | | | | | | | | Sensitivity ¹ | 1 mV/div to | 1 V/div | | | | | | | Input coupling | DC | | | | | | | | Vertical resolution ² | 8 bits, ≥ 12 l | oits with averagir | ng | | | | | | Channel to channel isolation
(any two channels with
equal V/div settings) | DC to 3 GHz: 90804A/91204A/91304A: 60 dB (≥ 1000:1)
90254A/90404A/90604A: 50 dB (≥ 316:1)
3 GHz to 8 GHz: 40 dB (≥ 100:1)
8 GHz to BW: 35 dB (≥ 56:1) | | | | | | | | DC gain accuracy*, 1 | ± 2% of full | scale at full resol | ution channel sc | ale (± 2.5% for 5n | nV/div) | | | | Maximum input voltage* | ± 5 V | | | | | | | | Offset range | > 40 mV/div
> 75 mV/div | ≥ 40 mV/div
v to ≥ 75 mV/div
v to ≥ 130 mV/div
iv to ≥ 240 mV/d | | Available offset
± 0.4 V
± 0.9 V
± 1.6 V
± 3.0 V
± 4.0 V | t | | | | Offset accuracy*, 1 | ≤ 3.5 V: \pm (2% of channel offset + 1% of full scale) + 1 mV > 3.5 V: \pm (2% of channel offset + 1% of full scale) | | | | | | | | Dynamic range | ± 4 div from center screen | | | | | | | | DC voltage measurement
accuracy*, ¹ | Dual cursor: ± [(DC gain accuracy) + (resolution)] Single cursor: ± [(DC gain accuracy) + (offset accuracy) + (resolution/2)] | | | | | | | | RMS noise floor (scope only) Volts/div 5 mV 10 mV 20 mV 50 mV 100 mV 200 mV 500 mV | 90254A
153 μV
183 μV
275 μV
645 μV
1.27 mV
2.47 mV
6.48 mV
12.5 mV | 90404A
199 μV
232 μV
342 μV
799 μV
1.56 mV
3.03 mV
8.00 mV
15.6 mV | 90604A
259 μV
295 μV
424 μV
985 μV
1.92 mV
3.71 mV
9.91 mV
19.2 mV | 90804A
322 μV
358 μV
498 μV
1.15 mV
2.22 mV
4.28 mV
11.5 mV
22.3 mV | 91204A
435 μV
483 μV
650 μV
1.45 mV
2.80 mV
5.41 mV
14.7 mV
28.5 mV | 91304A
467 μV
536 μV
758 μV
1.73 mV
3.37 mV
6.58 mV
17.4 mV
34.1 mV | | ^{*} Denotes warranted specifications, all others are typical. Specifications are valid after a 30-minute warm-up period, and ±5 °C from annual calibration temperature. ¹ Full scale is defined as 8 vertical divisions. Magnification is used below 5 mV/div. Below 5 mV/div, full-scale is defined as 40 mV. The major scale settings are 5 mV, 10 mV, 20 mV, 50 mV, 100 mV, 200 mV, 500 mV, 1 V. ² Vertical resolution for 8 bits = 0.4% of full scale, for 12 bits = 0.024% of full scale. ^{3 13} GHz DSP enhanced bandwidth not applicable at 5 mV/div. ^{10 11.8} GHz analog bandwidth at 5 mV/div for DSO91304A and DSO91204A models. ¹¹ Calculated from the bandwidth. ¹² Input impedance is valid when V/div scaling is adjusted to show all waveform vertical values within the scope display. ## Performance characteristics ## **Vertical (continued)** | (scope with probe) | 90254A | 90404A | 90604A | 90804A | 91204A | 91304A | |--------------------|------------|------------|------------|------------|------------|------------| | Volts/div | with 1131A | with 1132A | with 1134A | with 1168A | with 1169A | with 1169A | | 20 mV | 3.2 mV | 3.5 mV | 4.0 mV | 2.2 mV | 2.5 mV | 2.7 mV | | 50 mV | 3.3 mV | 3.6 mV | 4.0 mV | 2.3 mV | 2.8 mV | 3.1 mV | | 100 mV | 3.4 mV | 3.8 mV | 4.3 mV | 2.9 mV | 3.5 mV | 4.2 mV | | 200 mV | 4.0 mV | 4.6 mV | 5.3 mV | 4.7 mV | 5.9 mV | 7.5 mV | | 500 mV | 7.1 mV | 8.6 mV | 10 mV | 12 mV | 15 mV | 19 mV | | 1 V | 13 mV | 16 mV | 19 mV | 23 mV | 28 mV | 37 mV | #### Horizontal | Main timebase range | 5 ps/div to 20 s/div real-time, 5 ps/div to 500 ns/div equivalent-time | |---------------------------|--| | Main timebase delay range | –200 s to 200 s real-time, –25 μs to 200 s equivalent-time | | Zoom timebase range | 1 ps/div to current main time scale setting | | Channel deskew | ± 25 μs range, 100 fs resolution | | Time scale accuracy* | ± (0.4 + 0.5 * YrsSinceCal) ppm pk | # Delta-time measurement accuracy^{6a, 6b, 7} | accuracy ^{ba, bb, 7} | | |--|---| | Absolute,
averaging disabled | $\sqrt{\left(\frac{5.0 \cdot Noise}{SlewRate}\right)^2 + 20x10^{-24}} + \frac{TimeScaleAccy \cdot Reading}{2}$ sec pk | | Absolute,
>- 256 averages | $\sqrt{\left(\frac{0.35 \cdot Noise}{SlewRate}\right)^2 + 0.1x10^{-24}} + \frac{TimeScaleAccy \cdot Reading}{2}$ sec pk | | Standard deviation, averaging disabled | $\sqrt{\left(\frac{1.4 \cdot Noise}{SlewRate}\right)^2 + 0.6x10^{-24}} \sec_{rms}$ | | Standard deviation,
>- 256 averages | $\sqrt{\left(\frac{0.1 \cdot Noise}{SlewRate}\right)^2 + 0.01x10^{-24}} \sec_{rms}$ | Jitter measurement floor^{6a, 6b} Time interval error^{6c} $$\sqrt{\frac{1.0 \cdot Noise}{SlewRate}}^2 + 0.3x10^{-24} \sec_{rms}$$ Period jitter $$\sqrt{\frac{1.4 \cdot Noise}{SlewRate}}^2 + 0.6x10^{-24} \sec_{rms}$$ N-cycle, cycle-cycle jitter $$\sqrt{\frac{2.4 \cdot Noise}{SlewRate}}^2 + 1.7x10^{-24} \sec_{rms}$$ # Performance characteristics ## Acquisition | Maximum real-time sample rate | 91304A/91204A/90804A: 40 GSa/s (4 channels simultaneously)
90604A/90404A/90254A: 20 GSa/s (4 channels simultaneously) | | | | | | | |----------------------------------|--|---|--------------------------------|-------------|--------------|--------------------------------|---| | Memory depth per channel | | | | | | | | | Standard | 20 Mpts on 4 channels | | | | | | | | Option 50M | 50 Mpts on 4 channels (standard on DSA models) | | | | | | | | Option 100 | 100 Mpts on 4 channels | | | | | | | | Option 200 | 200 Mpts on 4 channels | | | | | | | | Option 500 | 500 Mpts on 4 channels | | | | | | | | Option 01G | 1 Gpts on 4 chan | nels | | | | | | | Maximum acquired time at highest | | | | | | | | | real-time resolution | 91304A/91204A/ | 90804A | | | \/90404A/ | 90254A | | | Resolution | 25 ps (40 GSa/s) | | | | 20 GSa/s) | | | | Standard | 0.5 ms | | | 1.0 ms | | | | | Option 50M | 1.25 ms | | | 2.5 ms | | | | | Option 100 | 2.5 ms | | | 5.0 ms | | | | | Option 200 | 5.0 ms | | | 10.0 ms | _ | | | | Option 500 | 12.5 ms | | | 25.0 ms | | | | | Option 01G | 25.0 ms | | | 50.0 ms | S | | | | Data transfer speed | 0 1 | 4.1 | 041 | 4.84 | 10.84 | 00.14 | 100 M | | Gigabit Ethernet | Samples: | 1 k | 64 k | 1 M | 16 M | 32 M | 128 M | | | MSa/s (Word): | 0.1 | 1.88 | 9.25 | 12.00 | 12.80 | 12.80 | | UCD 2.0 bi around (daying) | MSa/s (Byte): | 0.11 | 1.88 | 12.60 | 19.70 | 20.30 | 22.00 | | USB 2.0 hi-speed (device) | Samples: | 1 k
0.11 | 64 k
1.88 | 1 M
8.34 | 16 M
8.55 | 32 M
9.07 | 128 M
11.38 | | | MSa/s (Word):
MSa/s (Byte): | 0.11 | 1.88 | 11.60 | 14.40 | 14.90 | 18.10 | | Sampling modes | | | | | | | | | Real-time | Successive single | -shot acq | uisitions | | | | | | Real-time with averaging | Selectable from 2 | to 65534 | | | | | | | Real-time with peak detect | 91304A/91204A/ | 9 0804Δ· 4 | n GSa/s | | | | | | near time with peak detect | 90604A/90404A/ | | | | | | | | Real-time with hi resolution | Real-time boxcar | averaging | reduces | andom noi: | se and inc | reases reso | olution | | Equivalent-time | Resolution: 100 fs
Full bandwidth on | | nnels, 262 | ,144 sampl | e points m | aximum me | emory | | Segmented memory | Full bandwidth on all 4 channels, 262,144 sample points maximum memory ted memory Captures bursting signals at maximum sample rate without consuming memory during perior inactivity Number of segments: | | | | | | | | | Up to 131,072 s
Minimum interse
91304A / 9120
90604A / 9040 | segments
gment tim
4A / 9080
4A / 9025 | e:
4Α: 2.7 μs
4Α: 2.5 μs | 6
6 | | | d model number) inning of the next acquisition) | | | Maximum numbe Sample rate: | r of segmo
10 M
2048 | ents:
20 M
4096 | | | 10 M 500 l
2768 6553 | | | Roll mode | Scrolls sequential waveform points across the display in a right-to-left rolling motion. Works at sample rates up to 10 MSa/s with a maximum record length of 40MS. | | | | | | | | Filters Sin(x)/x Interpolation | On/off selectable points to enhance | | | | | | ts between acquired data
lity. | # Performance characteristics ## Hardware trigger | 0 0 1 | 040044 (040044 (000044) | | | | | |--|--|--|--|--|--| | Sensitivity ¹ | 91304A/91204A/90804A: Internal low ¹ : 2.0 div p-p 0 to 5 GHz Internal high ¹ : 0.3 div p-p 0 to 4 GHz, 1.0 div p-p 4 to 7.5 GHz 90604A/90404A/90254A ¹² : Internal low ¹ : 2.0 div p-p 0 to 5 GHz | | | | | | | 90604A/90404A/90254A ¹² : Internal low ¹ : 2.0 div p-p 0 to 5 GHz
Internal high ¹ : 0.3 div p-p 0 to 3 GHz, 1.0 div p-p 3 to 5 GHz | | | | | | | Auxiliary: DC to 100 MHz: 200 mV p-p into 50 Ω |
 | | | | | 100 MHz to 1 GHz: 500 mV p-p into 50 Ω | | | | | | Level range | | | | | | | Internal | ± 4 div from center screen or ± 4 Volts, whichever is smallest | | | | | | Auxiliary | \pm 5 V, also limit input signal to \pm 5 V | | | | | | Sweep modes | Auto, triggered, single | | | | | | Display jitter (displayed trigger jitter) ^{6a, 8} | 90804A, 91204A, 91304A: | | | | | | | $\sqrt{\left(\frac{0.9 \cdot Noise}{SlewRate}\right)^2 + 0.3x10^{-24} \sec_{rms}}$ | | | | | | | 90254A, 90404A, 90604A: | | | | | | | $\sqrt{\left(\frac{0.9 \cdot Noise}{SlewRate}\right)^2 + 0.3x10^{-24}} \sec_{rms}$ | | | | | | Trigger sources | Channel 1, channel 2, channel 4, aux, and line | | | | | | Trigger modes | | | | | | | Edge | Triggers on a specified slope (rising, falling or alternating between rising and falling) and voltage level on any channel or auxiliary trigger. | | | | | | Edge transition | Trigger on rising or falling edges that cross two voltage levels in $>$ or $<$ the amount of time specified. Edge transition setting from 250 ps. | | | | | | Edge then edge (time) | The trigger is qualified by an edge. After a specified time delay between 10 ns to 10 s, a rising or falling edge on any one selected input will generate the trigger. | | | | | | Edge then edge (event) | The trigger is qualified by an edge. After a specified delay between 1 to 16,000,000 rising or falling edges, another rising or falling edge on any one selected input will generate the trigger. | | | | | | Glitch | Triggers on glitches narrower than the other pulses in your waveform by specifying a width less than your narrowest pulse and a polarity. Triggers on glitches as narrow as 125 ps. Glitch range settings: < 250 ps to < 10 s. | | | | | | Line | Triggers on the line voltage powering the oscilloscope. | | | | | | Pulse width | Trigger on a pulse that is wider or narrower than the other pulses in your waveform by specifying a pulse width and a polarity. Triggers on pulse widths as narrow as 125 ps. Pulse width range settings: 250 ps to 10 s. Trigger point can be "end of pulse" or "time out". | | | | | | Runt | Triggers on a pulse that crosses one threshold but fails to cross a second threshold before crossing the first again. Can be time qualified with minimum setting of 250 ps. | | | | | | Timeout | Trigger when a channel stays high, low, or unchanged for too long. Timeout setting: from 250 ps to 10 s. | | | | | | Pattern/pulse range | Triggers when a specified logical combination of the channels is entered, exited, present for a specified period of time or is within a specified time range or times out. Each channel can have a value of High (H), Low (L) or Don't care (X). | | | | | | State | Pattern trigger clocked by the rising, falling or alternating between rising and falling edge of one channel. | | | | | | Setup/hold | Triggers on setup, hold, or setup and hold violations in your circuit. Requires a clock and data signal on any two inputs (except aux or line) channels as trigger sources. Setup and/or hold time must then be specified. | | | | | # Performance characteristics ## Hardware trigger (continued) | Trigger modes (continued) | | |-------------------------------------|--| | Window | Triggers on an event associated with a window defined by two-user adjustable thresholds. Event can be window "entered," "exited," "inside (time qualified)," or "outside (time qualified)" voltage range. Trigger point can be "cross window boundary" or "time out." Time qualify range: from 250 ps to 10 s. | | Video | Triggers from negative sync composite video, field 1, field 2, or alternating fields for interlaced systems, any field, specific line, or any line for interlaced or non-interlaced systems. Supports NTSC, PAL-M (525/60), PAL, SECAM (625/50), EDTV (480p/60), EDTV (576p/50), HDTV (720p/60), HDTV (720p/50), HDTV (1080i/60), HDTV (1080i/50), HDTV (1080p/60), HDTV (1080p/50), HDTV (1080p/25), HDTV (1080p/24), and user-defined formats. | | Trigger sequences | Three stage trigger sequences including two-stage hardware (Find event (A) and Trigger event (B)) and one-stage InfiniiScan software trigger. Supports all hardware trigger modes except "edge then edge" and "video," and all InfiniiScan software trigger modes. Supports "delay (by time)" and "reset (by time or event)" between two hardware sequences. The minimum latency between "find event (A)" and "trigger event (B)" is 3 ns. | | Trigger qualification AND qualifier | Single or multiple channels may be logically qualified with any other trigger mode | | Trigger holdoff range | 100 ns to 10 s | | Trigger actions | Specify an action to occur and the frequency of the action when a trigger condition occurs. Actions include e-mail on trigger and execute "multipurpose" user setting. | | Trigger shortcuts | Provides easy shortcuts to all trigger features | ## Software trigger (requires InfiniiScan event identification software – Option 009) | Trigger modes | | |--------------------|---| | Generic serial | Software triggers on NRZ-encoded data up to 8.0 Gbps, up to 80-bit pattern. Support multiple clock data recovery methods including constant frequency, 1st-order PLL, 2nd-order PLL, explicit clock, explicit 1st-order PLL, explicit 2nd-order PLL, Fibre Channel, FlexRay receiver, FlexRay transmitter (requires E2688A except for the constant frequency clock data recovery mode). | | Measurement limit | Software triggers on the results of the measurement values. For example, when the "pulse width" measurement is turned on, InfiniiScan measurement software trigger triggers on a glitch as narrow as 75 ps. When the "time interval error (TIE)" is measured, InfiniiScan can trigger on a specific TIE value. | | Non-monotonic edge | Software triggers on the non-monotonic edge. The non-monotonic edge is specified by setting a hysteresis value. | | Runt | Software triggers on a pulse that crosses one threshold but fails to cross a second threshold before crossing the first again. Unlike hardware runt trigger, InfiniiScan runt trigger can be further qualified via a hysteresis value. | | Zone qualify | Software triggers on the user defined zones on screen. Zones can be specified as either "must intersect" or "must not intersect." Up to four zones can be defined. | #### Measurements and math | Maximum measurement update rate | > 42,000 measurement/sec (one measurement turned on) > 122,000 measurement/sec/measurement (five measurements turned on) | |---------------------------------|--| | Measurement modes | Standard, Measure All Edges mode | # Performance characteristics ## Measurements and math (continued) | Waveform measurements
Voltage | Peak to peak, minimum, maximum, average, RMS, amplitude, base, top, overshoot, preshoot, upper, middle, lower | | | | | |--|---|--|--|--|--| | Time | Rise time, fall time, period, frequency, positive width, negative width, duty cycle, burst width, Tmin, Tmax, Tvolt, setup time (requires Option 002 or 004, standard on DSA models), hold time (requires Option 002 or 004, standard on DSA models), channel-to-channel delta time, channel-to-channel phase | | | | | | Mixed | Area, slew rate | | | | | | Frequency domain | FFT frequency, FFT magnitude, FFT delta frequency, FFT delta magnitude | | | | | | Level qualification Any channels that are not involved in a measurement can be used to level-qualify all timeasurements | | | | | | | Eye-diagram measurements Eye height, eye width, eye jitter, crossing percentage, Q factor, and duty-cycle distort | | | | | | | Jitter analysis measurements
Clock | Requires Option 002 (or E2681A) or 004 (or N5400A). Standard on DSA Series. Time interval error (TIE) clock with TIE band, high, low-pass filter, cycle-cycle jitter, N-cycle jitter, cycle-cycle + width, cycle-cycle width, cycle-cycle duty cycle | | | | | | Data | Time interval error (TIE) data with TIE band, high, low-pass filter, data rate, unit interval, clock recovery rate, burst time, burst period, burst interval | | | | | | Timing | Two sources: Setup time, hold time, phase, advanced One source: Period, frequency, + width, width, duty cycle, burst width, rise time, fall time, slew rate | | | | | | Statistics | Displays the current, mean, minimum,
maximum, range (max-min), standard deviation, number of measurements value for the displayed automatic measurements | | | | | | Histograms
Source | Waveform or measurement ¹³ | | | | | | Orientation | Vertical (for timing and jitter measurements) or horizontal (noise and amplitude change) modes, regions are defined using waveform markers | | | | | | Measurements | Mean, standard deviation, mean \pm 1, 2, and 3 sigma, median, mode, peak-to-peak, min, max, total hits, peak (area of most hits), X scale hits, and X offset hits | | | | | | Mask testing Allows pass/fail testing to user-defined or Agilent-supplied waveform templated you create a mask template from a captured waveform and define a tolerance rate or screen divisions. Test modes (run until) include test forever, test to specified and stop on failure. Executes "multipurpose" user setting on failure. "Unfold read will allow individual bit errors to be observed by unfolding a real time eye when on. Communications mask test kit option provides a set of ITU-T G.703, ANSI T industry-standard masks for compliance testing. | | | | | | | Waveform math | _ | | | | | | Number of functions | Four | | | | | | Hardware Accelerated Math | Differential and Common Mode Absolute value add average Putterworth ⁹ common mode differentiate divide EET magnitude EET | | | | | | Operators Absolute value, add, average, Butterworth ⁹ , common mode, differentiate, divid phase, FIR ⁹ , high pass filter, integrate, invert, LFE ⁹ , low pass filter (4th-order Bomagnify, max, min, multiply, RT Eye ⁹ , smoothing, SqrtSumOfSquare ⁹ , square, soversus, and optional user defined function (Option 010) | | | | | | | FFT 4 | | | | | | | Frequency range ⁴ | DC up to 20 GHz (at 40 GSa/s) or 10 GHz (at 20 GSa/s) | | | | | | Frequency resolution | Sample rate/memory depth = resolution | | | | | | Best resolution at
maximum sample rate | 91304A/91204A/90804A: 800 Hz
90604A/90404A/90254A: 400 Hz | | | | | | Frequency accuracy | (1/2 frequency resolution) + (1 x 10-6)(signal frequency) | | | | | | | (17.2 megaency resolution) + (1.3 to-o)(signal nequency) | | | | | # Performance characteristics ## Measurements and math (continued) | FFT (continued)
Signal-to-noise ratio ⁵ | 60 dB to > 100 dB depending on settings | | |---|--|--| | Window modes | Hanning, flattop, rectangular, Blackman-Harris | | | Measurement modes Automatic measurements | Measure menu access to all measurements, ten measurements can be displayed simultaneously | | | Multipurpose | Front-panel button activates ten pre-selected or ten user-defined automatic measurements | | | Drag-and-drop
measurement toolbar | Measurement toolbar with common measurement icons that can be dragged and dropped onto the displayed waveforms | | | Snapshot | Takes 29 snap shot measurements (customizable). | | | Marker modes | Manual markers, track waveform data, track measurements | | ## Display | Resolution XGA 1024 pixels horizontally x 768 pixels vertically Annotation Up to 12 labels, with up to 100 characters each, can be inserted into the waveform a Grids One, two or four waveform grids, each with 8 bit vertical resolution | | |--|--| | Waveform styles Connected dots, dots, infinite persistence, color graded infinite persistence. Inclu of intensity-graded waveforms. | | ## Computer system and peripherals, I/O ports | Computer system and peripherals | | | | | | |---------------------------------------|--|--|--|--|--| | Operating system | Windows 7 Embedded Standard | | | | | | CPU | Intel [®] Core 2 Duo 3.06 GHz | | | | | | PC system memory
Drives | 4GB DDR2 (standard) ≥ 250-GB internal hard drive Optional removable hard drive (Option 801) Optional USB external DVD-RW drive (Option 820) | | | | | | Peripherals | Logitech optical USB mouse, compact USB keyboard and stylus supplied. All Infiniium models support any Windows-compatible input device with a serial, PS/2 or USB interface. | | | | | | File types | | | | | | | Waveforms (supported max memory size) | Compressed internal format (*.wfm (200 Mpts)), comma-separated values (*.csv (1 Gpts)), tab separated values (*.tsv (1 Gpts)), public binary format (.bin (500 Mpts)), Y value files (*.txt (1 Gpts)), hierarchal data file (*.hf5(1 Gpts)), | | | | | | Images | BMP, PNG, TIFF, GIF or JPEG | | | | | | I/O ports | | | | | | | LAN | RJ-45 connector, supports 10Base-T, 100Base-T, and 1000Base-T. Enables Web-enabled remote control, e-mail on trigger or demand, data/file transfers and network printing (VXI-11). Recommended Web remote control tool: Ultra VNC (http://www.ultravnc.com/). | | | | | ## Performance characteristics #### Computer system and peripherals, I/O ports (continued) | I/O ports (continued) | | | |----------------------------|---|--| | PCI Express | PCI Express x4 link, enabled by sockets (optional- Option 823) | | | GPIB | IEEE 488.2, fully programmable (optional – Option 805) | | | RS-232 (serial) | COM1, printer and pointing device support | | | Parallel | Centronics printer port | | | PS/2 | Two ports. Supports PS/2 pointing and input devices. | | | USB 2.0 hi-speed (host) | Three USB 2.0 hi-speed host ports on front panel plus four USB 2.0 Hi-Speed host ports on rear panel | | | USB 2.0 hi-speed (device) | One USB 2.0 hi-speed device port on rear panel that enables USB instrument control | | | Dual-monitor video output | 15 pin XGA (1024x768), full color output of scope waveform display or dual monitor video output | | | Auxiliary output | DC (± 2.4 V); square wave (~715 Hz and ~456 MHz); trigger output (255 mV p-p into 50) | | | Trigger output | 5 V 50 Ω back-terminated | | | Time base reference output | 10 MHz filtered sine wave with all harmonics \leq -40 dBc. Amplitude into 50 Ω : 800 mV p-p to 1.26 V p-p (4 dBm \pm 2 dB) if derived from internal reference. Tracks external reference input amplitude \pm 1 dB if applied and selected. | | | Time base reference input | Must be 10 MHz, input Z0 = 50 Ω . Minimum 500 mV p-p (–2 dBm), maximum 2.0 V p-p (+10 dBm). | | | LXI compliance | Functional Class C | | #### **General characteristics** | Temperature ¹¹ | Operating: 5 °C to +40 °C; Non-operating: –40 °C to +65 °C | | |-------------------------------|---|--| | Humidity | Operating: up to 95% relative humidity (non-condensing) at +40 °C; Non-operating: up to 90% relative humidity at +65 °C | | | Altitude | Operating: up to 4,000 meters (12,000 feet); Non-operating: up to 15,300 meters (50,000 feet) | | | Vibration | Under vibration: for operating random the $0.3~g(rms)$ should be $0.21~g(rms)$, for non-operating random the $2.41~g(rms)$ should be $2.0~g(rms)$ and for swept sins the $(0.75g)$ should be $(0.50g)$. | | | Power | 100 - 240 VAC at 50/60 Hz; maximum input power 800 Watts | | | Weight | Net: 20 kg (44 lbs.)
Shipping: 27.4 kg (60 lbs.) | | | Dimensions (excluding handle) | Height: 283 mm (11.13 inch); Width: 432 mm (17.02 inch); Depth: 506 mm (19.91 inch) | | | Safety | Meets IEC 61010-1 +A2, CSA certified to C22.2 No.1010.1, self-certified to UL 3111 | | - * Denotes warranted specifications, all others are typical. Specifications are valid after a 30-minute warm-up period, and ±5 °C from annual calibration temperature. - 1 Full scale is defined as 8 vertical divisions. Magnification is used below 5 mV/div. Below 5 mV/div, full-scale is defined as 40 mV. The major scale settings are 5 mV, 10 mV, 20 mV, 50 mV, 100 mV, 200 mV, 500 mV, 1 V. - 2 Vertical resolution for 8 bits = 0.4% of full scale, for 12 bits = 0.024% of full scale. - 3 13 GHz DSP enhanced bandwidth not applicable at 5 mV/div. - 4 FFT amplitude readings are affected by scope and probe bandwidth limitations and input amplifiers roll-off (e.g. 3 dB roll-off at specified bandwidth of scope/probe). - 5 The FFT signal to noise ratio varies with volts/division setting, memory depth and use of time or frequency averaging. - 6a Noise is the displayed noise floor. SlewRate is the displayed slew rate of the signal at the threshold crossings. Sample rate = \max , $\sin(x)/x$ interpolation enabled. - 6b Measurement threshold = fixed voltage at 50% level. - 6c Time ranges ≤ 10 µs. - 7 Values represent time error between two edges on a single channel. Standard deviation value refers to the standard deviation of 256 consecutive measurements performed using an individual instrument. Reading is the displayed DTMA measurement value. TimeScaleAccy is the oscilloscope's specified time scale accuracy. - 8 Internal edge trigger mode. Trigger threshold = fixed voltage at 50% level. The slew rate independent value in the formula represents the traditional trigger jitter. - 9 Requires Option 010 user defined function. - 10 $\,$ 11.8 GHz analog bandwidth at 5 mV/div for DS091304A and DS091204A models. - 11 Calculated from the bandwidth. - 12 Typically triggers as low as 5 mV/div sensitivity. - 13 Measurment
histograms require EZJIT license # InfiniiMax II Series # Performance characteristics #### 1169A, 1168A | Bandwidth* | 1169A: > 12 GHz (13 GHz typical) | 1168A: > 10 GHz | | |--|---|---|--| | Rise and fall time Probe only When phase compensated by 90000A Series oscilloscope | 1169A: 28 ps (20 - 80%), 40 ps (10 - 90%)
1169A w/91204A: 25 ps (20 - 80%)
36 ps (10 - 90%)
1169A w/91304A: 23 ps (20 - 80%)
33 ps (10 - 90%) | 1168A: 34 ps (20 - 80%), 48 ps (10 - 90%)
1168A w/90804A: 38 ps (20 - 80%)
54 ps (10 - 90%) | | | System bandwidth (–3 dB) | 1169A w/91304A: 13 GHz (typical) 1168A w/90804A: 8 GHz
1169A w/91204A: 12 GHz | | | | Input capacitance ¹ | $\begin{array}{lll} \text{Cm} = 0.09 \text{ pF} & \text{Cm is between tips} \\ \text{Cg} = 0.26 \text{ pF} & \text{Cg is to ground for each tip} \\ \text{Cdiff} = 0.21 \text{ pF} & \text{Differential mode capacitance} = \text{Cm} + \text{Cg}/2 \\ \text{Cse} = 0.35 \text{ pF} & \text{Single-ended mode capacitance} = \text{Cm} + \text{Cg} \end{array}$ | | | | Input resistance* | Differential mode resistance = 50 k Ω ± 2% Single-ended mode resistance = 25 k Ω ± 2% | | | | Input dynamic range | 3.3 V peak to peak, ± 1.65 V | | | | Input common mode range | 6.75 V peak to peak dc to 100 Hz; 1.25 V peak to peak > 100 Hz | | | | Maximum signal slew rate | 25 V/ns when probing a single-ended signal 40 V/ns when probing a differential signal | | | | DC attenuation | 3.45:1 | | | | Zero offset error referred to input | ± 1.5 mV | | | | Offset range | ± 16.0 V when probing single-ended | | | | Offset gain accuracy | $< \pm 1\%$ of setting when probing single-ended | | | | Noise referred to input | 2.5 mV rms, probe only | | | | Propagation delay | ~6 ns (this delay can be deskewed relative to other signals) | | | | Maximum input voltage | 30 V peak, CAT I | | | | ESD tolerance | > 8 kV from 100 pF, 300 Ω HBM | | | | Temperature | Operating: 5 °C to +40 °C
Non-operating: 0 °C to +70 °C | | | ^{*} Denotes warranted specifications, all others are typical. $^{1 \}quad \text{Measured using the probe amplifier and N5381A solder-in differential probe head.}$ # InfiniiMax I Series # Performance characteristics ## 1134A, 1132A, 1131A, 1130A | Bandwidth* | 1134A: > 7 GHz | | | |-------------------------------------|---|--|--| | Rise and fall time (10% to 90%) | 1134A: 60 ps | | | | System bandwidth (–3 dB) | 1134A w/90604A: 6 GHz
1132A w/90404A: 4 GHz
1131A w/90254A: 2.5 GHz | | | | Input capacitance ¹ | Cm = 0.10 pF | | | | Input resistance* | Differential mode resistance = 50 k Ω ± 2% Single-ended mode resistance = 25 k Ω ± 2% | | | | Input dynamic range | 5.0 V peak to peak, ± 2.5 V | | | | Input common mode range | 6.75 V peak to peak dc to 100 Hz; 1.25 V peak to peak > 100 Hz | | | | Maximum signal slew rate | 18 V/ns when probing a single-ended signal 30 V/ns when probing a differential signal | | | | DC attenuation | 10:1 ± 3% before calibration on oscilloscope
10:1 ± 1% after calibration on oscilloscope | | | | Zero offset error referred to input | < 30 mV before calibration on oscilloscope
< 5 mV after calibration on oscilloscope | | | | Offset range | ± 12.0 V when probing single-ended | | | | Offset accuracy | < ± 1% of setting when probing single-ended | | | | Noise referred to input | 3.0 mV rms | | | | Propagation delay | ~6 ns (this delay can be deskewed relative to other signals) | | | | Maximum input voltage | 30 V peak, CAT I | | | | ESD tolerance | > 8 kV from 100 pF, 300 Ω HBM | | | | Temperature | Operating: 5 °C to +40 °C
Non-operating: 0 °C to +70 °C | | | ^{*} Denotes warranted specifications, all others are typical. ¹ Measured using the probe amplifier and solder-in differential probe head with full bandwidth resistors. ## **Infiniium 90000 Series ordering information** ## Infiniium DSA/DS090000A Series oscilloscopes | Model | Bandwidth | Channels | Sample rate | Standard memory | |---------------|-----------|----------|-------------|-----------------------| | DSA/DS091304A | 13 GHz | 4 | 40 GSa/s | 20 Mpts/50 Mpts (DSA) | | DSA/DS091204A | 12 GHz | 4 | 40 GSa/s | 20 Mpts/50 Mpts (DSA) | | DSA/DS090804A | 8 GHz | 4 | 40 GSa/s | 20 Mpts/50 Mpts (DSA) | | DSA/DS090604A | 6 GHz | 4 | 20 GSa/s | 20 Mpts/50 Mpts (DSA) | | DSA/DS090404A | 4 GHz | 4 | 20 GSa/s | 20 Mpts/50 Mpts (DSA) | | DSA/DS090254A | 2.5 GHz | 4 | 20 GSa/s | 20 Mpts/50 Mpts (DSA) | Note: The DSA/DS091304A uses DSP enhancement software to achieve 13 GHz bandwidth. It also adds a valuable DSP noise reduction and bandwidth control feature to reduce noise at bandwidths of 10, 8, 6, 4, 2, and 1 GHz. The non-DSP enhanced bandwidth of the DSA/DS091304A is 12 GHz. DSA Series comes with standard 50 Mpts memory, high speed serial data analyzer (Option 003/E2688A), EZJIT plus jitter analysis software (Option 004/N5400A) #### Standard accessories - · USB optical mouse - USB keyboard - User's quick-start guide - · Detachable accessory pouch - Power cord - Stylus pen - High-performance calibration cable (not included in DSA/DS090254A) - E2655B probe deskew and performance verification kit - Two 54855-67604 BNC-compatible to precision 3.5 mm (f) adapters (not included in DSA/DS090254A) - · One-year warranty Note: No probes are included with the DSA/DSO90000A Series oscilloscopes. The InfiniiMax Series probes or any other probes must be purchased separately. | Additional option | s and accessories | |--|---| | DS090000A-1CM | Rack Mount Kit | | DS090000A-A61 | ANSI Z540 Compliant Calibration | | DS090000A-801 | Removable Hard Drive | | N5474A
(requires Option 801)
N5474B
(requires Option 801) | Additional removable hard drive for SN lower than MY49470101 Additional removable hard drive for SN greater than MY49470101 with Windows XP | | N5474C
(requires Option 801) | Additional removable hard drive for SN greater than MY49470101 with Windows 7 | | DSO90000A-805 | GPIB Card-interface | | DS090000A-807 | 1 M ohm, adapter with a 500 MHz passive probe | | DSO90000A-820 | DVD-RW | | DS090000A-821 | Additional Precision BNC to SMA adapters, qty 2 | | DSO90000A-822 | External Touchscreen Monitor for Infiniium | | DS090000A-1A7 | ISO17025 Compliant Calibration | | Presales memory options | | | |-------------------------|--------------------------|--| | DS090000A-20M | 20M Memory / CH Upgrade | | | DS090000A-100 | 100M Memory / CH Upgrade | | | DSO90000A-200 | 200M Memory / CH Upgrade | | | DSO90000A-500 | 500M Memory / CH Upgrade | | | DS090000A-50M | 50M Memory / CH Upgrade* | | | DS090000A-01G | 1G Memory / CH Upgrade | | ^{*} Standard on DSA version oscilloscopes Mount your 90000 Series scope in a19" (487mm) rack with option 1CM Quickly remove your hard drive for additional security with option 801 # **Infiniium 90000 Series ordering information** | Factory installed option for new purchases | User installed
standalone
product number | SW applications | |--|--|--| | 002 | E2681A | EZJIT jitter analysis software (standard on DSA Series) | | 003 | E2688A | High-Speed serial data analysis with clock recovery and 8b/10b decoding (standard on DSA Series) | | 004 | N5400A | EZJIT Plus jitter analysis software (standard on DSA Series) | | 005 | N5403A | Noise reduction and bandwidth control option (standard on DSA Series and DSO91304A) | | 007 | N5391A | Protocol triggering and decode I ² C/SPI | | 008 | N5402A | CAN, LIN and FlexRay Protocal triggering and decode | | 009 | N5414B | InfiniiScan event identification software | | 010 | N5430A | Infiniium user-defined function application software | | 011 | N5452A | Infiniium application remote program interface software | | 012 | N5461A | Serial Data Equalization | | 013 | N5465A-001 | Basic InfiniiSim Waveform Transformation Toolset | | 014 | N5465A-002 | Advanced InfiniiSim Waveform Transformation Toolset | | 015 | N5462A | RS-232/UART Protocol triggering and decode | | 016 | N5464A | USB 2.0 Protocol triggering and decode | | 017 | N5463A | PCI Express® Protocol triggering and decode | | 018 | N8801A | SAS/SATA Protocol triggering and decode | | 019 | N8802A | MIPI D-Phy Protocol triggering and decode | | 021 | N5392A | Ethernet electrical performance validation and compliance software | | 022 | N5393B | PCI EXPRESS electrical performance validations and compliance software | | 023 | N5399A | HDMI electrical performance validation and compliance software | | 024 | N5409A | Fully buffered DIMM compliance applications | | 025 | N5410A | Fibre channel compliance applications | | 026 | N5411A | Serial ATA electrical performance validation and compliance software | | 027 | N5412A | Serial attached SCSI (SAS) electrical performance validation and compliance | | 028 | U7232A | DisplayPort compliance test software | | 029 | N5416A | USB 2.0 compliance test software | | 030 | N5431A | XAUI electrical validation with 10GBASE-CX4, CPRI, OBSAI, and Serial RapidIO | | 031 | U7233A | DDR1 and LPDDR compliance test
applications | | 032 | N5413B | DDR2 and LPDDR2 compliance test applications | | 033 | U7231A | DDR3 compliance test applications | | 034 | N5394A | DVI compliance application | | 035 | U7238A | MIPI compliance test application | | 036 | U7236A | 10GBASE-T Ethernet Electrical Compliance Application | | 038 | N5411B | SATA 6G Compliance Test Software | | 040 | N5467A | User Definable Application | | 041 | U7243A | USB 3.0 Compliance Test Software | | 061 | | MATLAB - Basic Digital Analysis Package | | 062 | | MATLAB - Standard Digital Analysis Package | # **Infiniium 90000 Series ordering information** ## Oscilloscope bandwidth upgrades | Upgrade | Descriptions | |---------|---| | N5471A | DSA/DS091204A to DSA/DS091304A upgrade (12 GHz to 13 GHz) | | N5471B | DSA/DS090804A to DSA/DS091204A upgrade (8 GHz to 12 GHz) | | N5471C | DSA/DS090604A to DSA/DS090804A upgrade (6 GHz to 8 GHz) | | N5471D | DSA/DS090404A to DSA/DS090604A upgrade (4 GHz to 6 GHz) | | N5471E | DSA/DS090254A to DSA/DS090404A upgrade (2.5 GHz to 4 GHz) | Note: Order as many upgrades as needed to reach the desired final bandwidth of the instrument. For example, to upgrade from a DSA/DS090804A to DSA/DS091304A order N5471B and N5471A. ## Oscilloscope memory upgrades | Upgrade | Descriptions | |---------|--| | N5472A | AFTER-PURCHASE 10M TO 20M MEMORY UPGRADE | | N5472B | AFTER-PURCHASE 20M TO 50M MEMORY UPGRADE | | N5472C | AFTER-PURCHASE 50M TO 100M MEMORY UPGRADE | | N5472D | AFTER-PURCHASE 100M TO 200M MEMORY UPGRADE | | N5472E | AFTER-PURCHASE 200M TO 500M MEMORY UPGRADE | | N5472F | AFTER-PURCHASE 500M TO 1G MEMORY UPGRADE | ## **Operating system upgrades** | Upgrade | Descriptions | |----------------------|--| | N2753A | Windows 7 for Infiniium 9000 scope with Windows XP and SN>MY50410100 | | N2754A
Option 001 | Window 7 and M890 motherboard for Infiniium 9000 scopes with Windows XP and SN <my50410100< td=""></my50410100<> | # Agilent Technologies Oscilloscopes Multiple form factors from 20 MHz to >90 GHz | Industry leading specs | Powerful applications ## **Agilent Email Updates** www.agilent.com/find/emailupdates Get the latest information on the products and applications you select. #### www.lxistandard.org LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium. ## **Agilent Channel Partners** www.agilent.com/find/channelpartners Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience. Agilent Advantage Services is committed to your success throughout your equipment's lifetime. We share measurement and service expertise to help you create the products that change our world. To keep you competitive, we continually invest in tools and processes that speed up calibration and repair, reduce your cost of ownership, and move us ahead of your development curve. www.agilent.com/find/advantageservices www.agilent.com/quality VESA, VESA logo, and DisplayPort Certified Logo are trademarks of the Video Electronics Standards Association. The USB-IF Logos are trademarks of Universal Serial Bus Implementers Forum, Inc. HDMI, the HDMI logo and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC. MIPI is a licensed trademark of MIPI, Inc. in the U.S. and other jurisdictions. For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at: #### www.agilent.com/find/contactus #### **Americas** | Canada | (877) 894 4414 | |---------------|----------------| | Brazil | (11) 4197 3500 | | Mexico | 01800 5064 800 | | United States | (800) 829 4444 | #### **Asia Pacific** | Australia | 1 800 629 485 | |--------------------|----------------| | China | 800 810 0189 | | Hong Kong | 800 938 693 | | India | 1 800 112 929 | | Japan | 0120 (421) 345 | | Korea | 080 769 0800 | | Malaysia | 1 800 888 848 | | Singapore | 1 800 375 8100 | | Taiwan | 0800 047 866 | | Other AP Countries | (65) 375 8100 | #### **Europe & Middle East** | Belgium | 32 (0) 2 404 93 40 | |----------------|----------------------| | Denmark | 45 70 13 15 15 | | Finland | 358 (0) 10 855 2100 | | France | 0825 010 700* | | | *0.125 €/minute | | Germany | 49 (0) 7031 464 6333 | | Ireland | 1890 924 204 | | Israel | 972-3-9288-504/544 | | Italy | 39 02 92 60 8484 | | Netherlands | 31 (0) 20 547 2111 | | Spain | 34 (91) 631 3300 | | Sweden | 0200-88 22 55 | | United Kingdom | 44 (0) 131 452 0200 | | | | For other unlisted countries: #### www.agilent.com/find/contactus Revised: June 8, 2011 Product specifications and descriptions in this document subject to change without notice. © Agilent Technologies, Inc. 2011 Published in USA, November 2, 2011 5989-7819EN