

Radiocommunication Service Monitor CMS

Radio testers for service, production and development

- Radio tester family comprising three models to cover all measurement requirements
- Suitable for every type of radio equipment
- Transmitter, receiver and duplex measurements on mobile radios, base stations and RF modules
- Analog and digital signalling
- Large high-contrast LCD screen
- Simultaneous display of settings and results
- Manual and automatic measurements
- Tracking generator
- · Spectrum monitor
- Stationary and mobile use
- Cable fault finder

Ergonomic tester for all fields of radiocommunications: Radiocommunication Service Monitor CMS

Radiocommunication Service Monitor CMS ...

The Radiocommunication Service Monitor CMS from Rohde & Schwarz is the ideal radio tester for use in **service, maintenance and test departments**. It is suitable for all transceivers using AM, FM or φM as well as SSB.

Optional extensions enable the CMS to satisfy all requirements of radio measurements and even to cover related fields. Low weight, compact size and low power consumption make this instrument particularly suitable for **mobile use**. Whether stationary or mobile, the CMS with its extensive test facilities always provides a valuable service.

The CMS uses a high-contrast, backlit **LCD screen** with high resolution and is operated via softkeys. A clear menu structure allows fast and direct access to all measurement facilities. With the **autorun control** and **printer interface**, automatic test routines can easily be configured and stored via the front-panel keypad. Tolerances can be inserted into these test routines to determine and log pass/fail limits.

Battery-backed memory cards are used as program and test report library. Test reports, program lists and screen hardcopies can be output on a printer.

... three radio tester models to suit every application

CMS50 – the budget-priced model for service applications

- Transmitter and receiver testing
- Spectrum monitor
- Fully automatic testing

CMS57 - the specialist for avionics

- Transmitter and receiver testing with enhanced capabilities of CMS50 (see specifications)
- RF spectrum monitor with zero-span to full-span display
- Extremely sensitive RF frequency counter
- Transient recorder for
 - frequency versus time
- power versus time
- Fully automatic testing

Additional equipment:

VOR/ILS signal generator

CMS54 – the high-end tester for demanding requirements

- Transmitter and receiver testing with enhanced capabilities of CMS 50 (see specifications)
- RF spectrum monitor with zero-span to full-span display
- Extremely sensitive RF frequency counter
- Transient recorder for
 - frequency versus time
 - power versus time
- Fully automatic testing

Additional equipment:

- Full-span tracking generator from 0.4 MHz to 1000 MHz
- Adjacent-channel power meter with standard ETSI filters
- Duplex modulation meter
- Automatic harmonic measurements
- Cable fault finder

Versatile fields of application ...

... in service

Ease of operation, automatic presettings and test routines as well as clear display of all parameters ensure efficient measurements.

... on-site

The Radiocommunication Service Monitor CMS is a rugged and handy unit that is particularly suitable for mobile use. It can be supplied from the local DC voltage (long operating times thanks to low power consumption). The results of the automatic transceiver test can be stored on a memory card for later analysis and printout.

... in production

The CMS can be used in production environments both for module testing and for final system testing without any restriction. The built-in autorun control allows modules to be tested and adjusted without the need for an external controller, the results being logged at the same time. The CMS can also be integrated into larger test systems via the IEC/IEEE bus, short measurement times in pre- and final testing being obtained as a result.

... in development

The CMS offers great benefits to the development engineer: it combines in a minimum of space RF and AF generators as well as analyzers with high accuracy and wide dynamic range. In particular the CMS54 features measurement capabilities, such as measurement of frequency/power transients of mobile phones, base stations or RF modules, which usually require a comprehensive set of measuring instruments.

CMS – a test set replacing many individual measuring instruments

Due to the comprehensive standard configuration of the individual models and the optional extensions tailored to specific applications, external measuring instruments in addition to the CMS are not required.

Signal sources

- RF synthesizer from 0.4 tMHz o 1000 MHz, resolution 10 Hz, with AM, FM, jM and multitone modulation capabilities
- Two independent modulation generators, 20 Hz to 30 kHz each, resolution 0.1 Hz
- Selective-call coder for all standards (also user-programmable)
- CDCSS coder
- DTMF coder
- 10-MHz reference frequency input/output
- VOR/ILS signal generator

Signalling unit

 NMT 450, NMT 900 (SIS), NMT 450 I, E-TACS, J-TACS, N-TACS, TACS II, C-Net, N-AMPS, E-AMPS, Radiocom 2000, POCSAG

Measuring facilities

- RF frequency counter, RF frequency-offset counter
- RF power meter from 1 mW to 100 W
- Selective RF power meter down to -100 dBm
- RF spectrum monitor with wide dynamic range and filters which also allow modulation analysis (AM, FM, SSB)
- Tracking generator in frequency range 400 kHz to 1000 MHz
- Adjacent-channel power meter with standard ETSI filters
- Modulation meter for AM, FM and φM; detectors: +PK, -PK, PK HOLD, ±PK/2, RMS, RMS √2

- Duplex modulation meter for duplex spacings of any size
- AF voltmeter with peak and true RMS weighting
- SINAD meter with variable test frequency
- S/N meter
- Distortion meter with variable test frequency
- AF frequency counter with period and gate-time counting
- Selective-call decoder for all standards (also user-programmable)
- DTMF decoder
- Oscilloscope
- DC ammeter/voltmeter
- Transient recorder for analysis of power and frequency transients
- SSB menus
- Harmonic measurements
- Cable fault finder

Filters

- CCITT or C-message filter for weighting to relevant standards
- Continuously tunable bandpass filter from 50 Hz to 5 kHz with high

skirt selectivity for selective modulation and AF measurements

- Continuously tunable notch filter from 100 Hz to 5 kHz for signal suppression
- Highpass and lowpass filters for band limiting and measurement of subaudio tones

Other facilities

- Second RF input with high sensitivity for off-air measurements, can be used independently for module testing
- Built-in 600-Ω AF transformers for modulation generator and AF voltmeter
- Connector for battery (11V to 32 V)
- 13-dBm RF output for off-air measurements
- Memory for storing complete instrument setups
- Carrier bag

Automatic tests

Automatic test routines are indispensable for high throughput and reproducible results in service and production: in the learn mode, the Radiocommunication Service Monitor CMS stores all manual settings and measurements and produces from them ready-to-start automatic test routines.

The user need not have any programming knowledge or learn equipment-specific command sets.

Tolerances, comments and conditions (loops, jumps, queries and control commands) can additionally be inserted into these test routines. Programs can also be activated directly from the memory card.

The test report format may be user-specified and can be clearly structured by transferring control characters to the printer, such as blank line, paragraph and bold-face.

Test routines, results and memory card contents can be logged on a directly connectible printer

CMS user prompting - all settings and test parameters at a glance

The user interface, which shows all important measurements and allows entry of the necessary parameters, is optimized for each application.

Erroneous settings immediately result in a prompt for clarification from the user.

Submenus can be called up for setting or evaluating specific individual parameters.

Transmitter test

RF measurements, evaluation of demodulated signals and setting of modulation generators

PREU	No	Id	T[ms]	Frq[Hz]	Devi[%]
TONE	00	1	69	1060.1	0.0
NUMBER	01	1	67	2596.7	-0.2
	02	8	70	1996.4	-0.2
	03	7	72	1828.4	-0.1
De la compañía de la comp	04	0	72	2400.3	0.0

Contents, duration and frequency deviation of selective call signals

Zoom function for alignment

Using the insertion units of the NAS family, VSWR, forward and reflected power can be indicated

Spectrum monitor/Tracking generator

150-Hz filter allowing direct modulation analysis for AM, FM and SSB

Settings made are shown in the main menu so that erroneous measurements due to unknown background settings are impossible.

The user interface may be selected in English, French, German, Italian, Spanish or Swedish.

Instrument settings and frequencies can be saved in an internal nonvolatile memory and recalled as required.

Receiver	test
Receiver	10.31

TX-TEST	RX-TES	T CMS - Local		ŧ	LOCK
SET RF	1 48.33	3000 MHz	1.5000 kHz	2.800 kHz	AF 1 Mod 1
RF LEV	. 1.702 uV	∠0 dB 0	8F 0.3000 kHz	MOD 0.000 kHz	AF 2 Mod 2
AF LEV	0.934 v	RMS +1	AF Amp: 0.5 V/0	TIME: 0.2 ms/0	SCOPE MODE
CODE	ZVEI1 11875 ACK	OFF			BEST Range
FILTER	LP HP				AMP
SINAD	27.4 dB 1.500 kHz	<u> →] ▼[+</u> +50			TIME
S/N	dB	Y + + 0.025	I	V	Y POS

Generator settings, evaluation of receiver AF and carrier modulation setting

Channel numbers and duplex spacing can be defined and used instead of frequencies

	0.000 kHz	NOD EXT
		NOD OFF
PK	0.014 0	MOD EXT CRL
PK	1.414 U	MOD EXT REF
	DC AC	AN- COUPL

External modulation can be used e.g. for modulating several tones or data signals for various systems

BHDIJTH MERS	10.40 kHz BANDWIDTH -0.60 kHz FRA OFFSET
SRUELCH MERS	
AUIET	
LEVEL	PD EMF

Semi-automatic search routines for squelch level, receiver bandwidth and sensitivity perform elaborate measurements within a few seconds

Duplex test

RX-TEST	DX-TEST CMS - Local						
SET RF	152.85000 MH	z 148.25000 MHz	COUNT SET RF				
RF LEV	10.00 uV 20 dB	− 3.945 ω +++++++++++++++++++++++++++++++++++	POWER				
AF LEV	1.220 V RMS +		DEMOD				
MOD 1 Mod 2	2.800 kHz 0.500 kHz	1.0000 kHz 1.00 mV	aF 1 o LEV 1				
FILTER	OFF	71.0 Hz 0.00 mV	AF 2 LEV 2				
SINAD Dist	34.7 dB 1.000 kHz +		IF				
S/N	dB +0.0						

Transmitter and receiver parameters at a glance; efficient measurements on duplex radio equipment and modules

Signalling

The CMS features built-in signalling units combining signalling measurements and receiver/transmitter tests on mobile stations as well as, to a certain extent, on base stations.

The signalling units support all main radio networks including their country-specific versions. No external equipment is required for testing. All signalling routines are permanently available (no loading or reloading of software is required).

The following standards can be simulated:

- Selective call to all international standards
- DTMF coding and decoding
- POCSAG/Cityruf/Euromessage
- CDCSS (Continuous Digital Coded Squelch System)

The following signalling routines are available for cellular networks:

- C-Net
- NMT 450 (SIS), NMT 450 I
- NMT 900 (SIS)
- AMPS, E-AMPS
- TACS, E-TACS, J-TACS, TACS II
- Radiocom 2000

RX-TEST	POCSAG	CMS - Local			TX-TEST	
SET RF	153.27	500 MHz	0.0	0000 MHz	COUNT SET RF	Í
RF LEV	. 1.000 mV	20 dB 0	W	T → → → ↓ -0.025	POWER	
AF LEV	0.0 mV	RMS +0.025	kHz	RMS +0.025	DEMOD	
HOD 1 HOD 2	6.000 kHz 0.000 kHz		1.0000 kHz	1.00 mV	AF 1 LEV 1	Ĩ.
PAGER IDENT	0008050	TEL. TYPE : 1 F	one	512	Dir FSK FFSK TRANS,	
DEF. TELEGR.					TELEGR.	
	TONE A B (: 0	1	Tone Num Al	phanum	TELE TYPE
	NUMERIC 0123456	7890123456789				TRAN
	ALPHA NUMERIC THE QU	IICK ABC	abc 123 1	"#\$%		PREV

POCSAG (Post Office Code Standardization Advisory Group) signalling allows extremely simple addressing of and test calls to all paging systems currently on the market and operating according to this standard, e.g. Cityruf, Euromessage, tone call as well as numeric and alphanumeric pagers.

RX-TEST	NM	Т	CMS - L	ocal			TX-TEST]	
SET RF)	935.2	3750 M	1Hz	890.23	750 MHz	COUNT SET RF		
RF LEV	50.	.00 uV	<u> </u> 20 dB	0	.000 u ¹	+ + + + 0.025	POWER		
AF LEV	0.0 mV RMS +0.025 kHz RMS +0.025					DEMOD			
MOD 1 MOD 2		0 kHz 0 kHz		1.	000 0 kHz	1.00 mV	AF 1 LEV 1	Í	
EXEC	Roamin	ig				10 20	CALL-CH TROF-CH		
EXEC	Direct	Activati	on			2	COUNTRY MTX AREA		
INS CINTR IDENT	1 234567	7				1 3	TR-AREA POWER	Í	
	EXEC	Mobile calls M	Station ITX		egistered		ACCESS		
	EXEC	MTX ca Mobile	lls Station	1-23458	1567			SIS MODE	1
	EXEC	Batter	ry Save Mo	de				PREU MENU	Í
		EXEC	Clear by Mobile S		Conn	ected		3 20	POUER
		EXEC Clear by MTX			234567-89:		3	OO Hz	DEUI FILTER
		EXEC	Switch	Channel /	Power		TIP-SCOULS	e Power	EXEC

RX-TEST	TA	CS	CMS - L	ocal				TX-TEST]	
SET RF		935.5	6250 M	1Hz	890.5	6250	0 MHz	COUNT SET RF		
RF LEV	0.5	00 mV	1	0	W	T	-0.025	POWER		
AF LEV		0.0 mV	RMS +	0.025	kHz	RMS	+0.025	DENOD		
MOD 1 MOD 2		0 kHz 0 kHz			1.0000 kHz		00 mV	AF 1		
EXEC	Regist	tration					23	CONTROL CHANNEL		
EXEC	Direct	Activati	ion						1	
PHONE HO	111.1.11	1111							1	
	EXEC	Origin by Pho			Registered	_	-	300	VOICE CHANNEL	
	EXEC	Origin by Bas	ation		1.111111 -No.: 11/03/00.	/11964		0	POWER PREV	Ī
	-	EXEC	Release		Con	versa	tion		MENU	POWER
			by Phon Release		111.1.11111	1		5.0	300 00 Hz	CHANNEL
		EXEC	by Base				SAT+	VOICE SAT		FILTER
		EXEC	Change	Channel				Chan	ge Power	EXEC

NMT is operated in several countries with different frequencies, duplex and channel spacings. The CMS takes account of this fact by allowing free selection and country-specific definition of each parameter. This basic setting is retained for further measurements after the instrument is switched off and on. The signalling test combines analog RF and AF measurements with digital signalling which can be recalled very easily and is adaptable in practically all network parameters.

In addition to NMT, **Radiocom 2000** signalling is used in France. The CMS supports private and public telephone networks as well as mixed types of networks and channel change. Transmitter frequency, duplex spacing and channel spacing can be freely defined for special phones.

The test configuration for **TACS/AMPS** phones is similar to other standards, but the signalling is completely different. However, the user need not refer to the specifications, but is conveniently menu-guided through the mobile phone test as with all other tests.

Unit in original size

All functions are clearly displayed; 16 softkeys allow direct access to individual parameters. The large, backlit LCD screen provides clear and simultaneous readout of all test results, entries and functions. Hardcopy of screen display, entry of tolerance and reference values are made at a keystroke.

Settings can be varied in selectable steps using the spinwheel.

Programs, instrument settings and test results can be stored on memory cards. Additional inputs and outputs allow independent and versatile use of signal sources and test facilities.

CMS54 - the radio tester for the high-end service

For all fields of radiocommunications:

- Base-station testing and monitoring
- Development of RF modules for any application such as
 - radio remote control
 - cordless telephones
 - door-closing systems
- Production and installation of systems with high or low transmitter power, such as
 - high-power transmitters
 - radio telephones, handies
- Duplex modulation meter with any frequency offset
- Direct measurement of transmitter harmonic suppression

Full-span spectrum monitor

- Full-span spectrum display from 10 MHz to 1000 MHz
- Display range 80 dB
- Analysis bandwidths from 150 Hz (modulation spectra AM/FM/SSB) to 3 MHz
- Sensitivity down to -110 dBm
- Markers for synthesizer-accurate frequency and selective level measurements
- Reference marker

- Storage of spectrum displays and demodulation of displayed spectral lines (FREEZE & LISTEN)
- Quick mode for fast alignment of RF components
- Built-in tracking generator with selectable level and frequency offset; for measurements on filters, modules and antenna systems
- Cable fault finder

Transient frequency and power measurements

10 dB/0 5 kHz/0 5 mz/0	dBm -1.637 kHz +12.40 ms	POMER: FREAU:	dBm	SETTLNG MODE
	X			RRM
				AMP
			1	TIME
1.1.	4.4.		ê-E	MARKER

Combined display of power and frequency transients

Measurement of power levels upon switching a transmitter on and off or of power ramps (data transmission system)

Adjacent-channel power measurement

Adjacent-channel power can be measured directly without external filters. The filters required to ETSI recommendations are integrated in the CMS.

POWER	75.1 dB
ACP	+100 +100
RDJCNT CH	-2 -1 +1 +2
CH- SPACE	25 20 12.5 10 kHz
FILTER	16 14 8.5 kHz
FREE CH	+25.00 kHz
INPUT 1 INPUT 2	EXT-ATT: 0.0 dB 0.0 dB INT: 0 dB

Harmonic measurements

Harmonics in the range up to 1 GHz are measured at a keystroke and displayed in digital and analog form.

POWER ACP	CARRIER:	38.1	dBm
ALL	HARMONICS:		
1st	72.3 dB	1	+100
2 nd	94.7 dB	++++	+100
3 rd	95.6 dB	} →+++	+100
4 th	95.7 dB	├ →→	+100

Additional data of CMS54

Specifications of Base Unit (pages 18 and 19) are fully applicable.

RF spectrum monitor (also for CMS57)

Frequency range	1 MHz to 1000 MHz
Span	0 (zero span) to 50 MHz; full span for frequency range 10MHz to 1000 MHz
Reference level	+47dB to -47 dBm (input 1)
Sensitivity	<-110 dBm (for resolution filter ≤6 kHz
ESCAPEWAR (10	and reference level ≤-37 dBm at in-
. V.	put 2, f ≥10 MHz)
Inherent spurious responses	<-50 dBc (for reference level
	>10 dBm and f >50 MHz)
Display dynamic range	>65 dB (for reference level >-7 dBm
	at input 1)
Scaling	2/5/10 dB/div
Display range	≤80 dB
Resolution filter (3-dB bandwidth)	150 Hz (for modulation analysis),
01 //S	6/16/50/300 kHz/1/3 MHz (for
	full span), coupled to span
Error	<3 dB + resolution
Resolution	0.4 dB

Transient recorder (also for CMS57)

Measurement of power and frequency as a function of time with graphical display and selectable zoom

Time scale

Frequency transients

RF measurement range FM deviation measurement range Scaling Triggering

Power transients RF measurement range

Display dynamic range Scaling Triggering

50 µs/div to 1 s/div, max. recording time 40 s

1 MHz to 1000 MHz 0 to ±100 kHz 0.5 kHz to 50 kHz/div internal, automatic (frequency changes >8 kHz)

1 MHz to 1000 MHz 60 dB (for 47 dBm at input 1) 2/5/10/20 dB/div internal, automatic (power 10%)

10/12.5/20/25 kHz and freely se-

lectable up to 1 MHz

Adjacent-channel power measurements (with CMS-B9 also for CMS57)

70 dB 69 dB 68 dB 66 dB

Filter conform to ETSI recommendation

Channel spacings

Dynamic range (CW, FM)	
25 kHz	
20 kHz	
12.5 kHz	
10 kHz	

Harmonic measurements (with CMS-B9 also for CMS57)

Display of 1st to 4th harmonic Max. harmonic frequency Dynamic range

1000 MHz >60 dB >90 dB in frequency range 26.965 MHz to 27.405 MHz (CB radio)

RF frequency counter (also for CMS57)

Frequency range

Input level range (CW, FM) Input 1 Input 2

(usable from 100 kHz, IF narrow) 0 to +47 dBm

-40 dBm to +7 dBm

0.5 MHz to 1000 MHz

Transmitter measurement, 2nd RF input (also for CMS57)

Additional internal switch-selectable 0/24-dB attenuator pad for measurements with higher levels at input 2

CMS57 - the avionics specialist

The Radiocommunication Service Monitor CMS 57 is the ideal radio tester for service and maintenance in the field of avionics. A built-in VOR/ILS signal generator generates all test signals for

- VOR (VHF Omnidirectional Range),
- ILS (Instrument Landing System),
- MB (Marker Beacon),
- Autopilot.

The CMS57 features the same characteristics and optional extension facilities as the CMS52.

The VOR/ILS test signals are available as RF and AF signals at different outputs.

The RF is not limited to the defined receiving ranges, but can be user-selected for versatile applications (e.g. IF module testing). Since the VOR/ILS AF signal is provided separately, it can be fed into demodulators, filters or rectifiers of the receiver or be used as the modulation source of a second signal generator for use as a jammer in the adjacent channels.

The CMS57 combines conventional radiocommunication and radionavigation measurement facilities so that avionics measurements can be performed by a single instrument. Typical

	VOR	45 - Local		
SET RF	108.0000	0 MHz		AF MODE
RF LEU AF REF	, 4.145 uV 1 → dB	0		
30Hz Var		30. 0 х	30.0 Hz	VAR VAR F
9960Hz Carrier		30.0 ×	9960.0 Hz	CARRIER CARR. F
9960Hz FM			480 Hz	MOD FN
1020Hz AUX		0.0 ×	1020.0 Hz	AUX AUX F
PHASE	120.00 *		TO FROM	DIRECT.

Frequencies and deviations adjustable over a wide range allow receiver testing in line with standards

ILS-6S	ILS-LOC CMS - Local		
SET RF	108.10000 MHz		AF MODE
RF LEV RF REF	7.525 uV 5 dB 0		
PHASE	31.00 °	20.0 %	MOD
90Hz		90.0 Hz	90Hz Var f
150Hz		150.0 Hz	150Hz Var F
1020Hz RUX		0.0 x 1020.0 Hz	AUX AUX F
DDM	0.093 (90 uA)	RIGHT LEF	HORIZON

Fine variation of the DDM value in steps of 0.001 DDM for ILS and of phase in steps of 0.01° for VOR ensure accurate adjustment of onboard monitor

ILS-LOC	ILS-GS CHS - Local			MB
SET RF	334.70000 MHz (LOC-FREQ : 108.10000 MHz)			AF MODE
RF LEV AF REF	a 5.514 uV 5 dB 0			
PHASE	23.00 °		40.0 %	NOD
90Hz			90.0 Hz	90Hz Var F
150Hz			150.0 Hz	150Hz Var F
1020Hz Aux		0.0 ×	1020.0 Hz	AUX AUX F
DOM	0.175 (150 uA)		DOLJN UP	VERTICAL

The AF oscilloscope can be used in all operating modes, allowing for instance a simultaneous display of the signal demodulated by the device under test

CMS - Local MB ILS-LOC ILS-6S SET RF 75.00000 MHz **RF LEV** 42.4 mU +50 RF LEV 00 4.330 uV 5 dB --- mU +0.025 VOLTAGE AF REF SCOP AMP: 20 mV/0 TIME: 0.2 ms/0 400 Hz 1300 Hz BEST RANGI MB F OOD Hz OFF 95.0 % AMP MB LEV 1020Hz TIME AUX AUX AUX F Y POS 1020.0 Hz 0.0 %

A menu is also available for the generation of marker beacons features such as selectivity and sensitivity of the VOR/ILS receiver can be checked. A second, switchable RF input together with the selective RF level meter and spectrum monitor meet all requirements even for measurements on frequency-converting modules. Parallel utilization of all capabilities offered results in additional advantages for VOR/ILS applications. The AF voltmeter and the oscilloscope are for instance simultaneously available for AF measurements.

The operating concept of the Radiocommunication Service Monitor CMS57 is so that only a few settings are required for testing all characteristics of VOR/ILS receivers.

Signal parameters are defined either by

- direct keyboard entry,
- fine variation via spinwheel
- or
- recall of preset standard RF frequencies,
- fixed coupling of ILS glideslope and ILS localizer frequencies according to the specification,
- recall of preset test parameters like phase or DDM (Difference in Depth of Modulation).

By varying all test parameters an in-depth analysis of all functions is possible. In addition, a fast functional test may be carried out by simply recalling the standard settings to ARINC 578, 579.

Small size, low weight and battery operation enable the CMS57 to be used in the cockpit or outside the aircraft for fast go/nogo testing based on off-air measurements (RAMP test).

Specific data of CMS57

Specifications of Base Unit (pages 18 and 19) are fully applicable

Range	Resolution	Error
0 1- 2400	0.012	typ. 0.05°
	CO. 2. CO. 2. S. 4.	≤0.04°
0.10.300	0.01	20.04
7.9 kHz to 12 kHz		
0 to 100%	0.1% AM	typ. <2% for 30% AN
0 to 100%	0.1% AM	<2% for 30% AM
384 Hz to 576 Hz	1 Hz	≤1 Hz
the time server and the loss		
24 Hz to 36 Hz		
0	0.10/ 414	1
		typ. <2% for 30% AM <2% for 30% AM
0 to 100%	0,1% AM	<z avm<="" fof="" ju="" o="" td=""></z>
50 Hz to 20 kHz		
	0.1% AM	≤3%, for 1020 Hz
010100%	0,1 /0 /MM	and 10% to 20% AA
0 to180°, referred	0.01°	≤] ⁿ
to 150 Hz		
72 Hz to 108 Hz		
120 Hz to 180 Hz		
CONTRACTOR		
	0.101.444	.00 (1000 U
0 to 100%	0.1% AM	≤3%, for 1020 Hz
		and 10% to 20% AA
0 to 50%	0.1% AM	typ. <2% for 20% AN
		<2% for 20% AM
for 20% AM		
n		<0.0004 DDM
п		<2% + 0.0004 DDN
CARACTER - REACTED CERTER AND		for DDM ≤0.2
	0.001 DDM	≤3% + 0.0002 DDN
for 20% AM		for DDM ≤0.4,
		AF level 0.5 V to 5 V
0 to 50%	0.1% 4M	typ. <2% for 40% AN
		<2% for 40% AM
	0.001 0011	
		<0.001 DDM
n		<2% + 0.001 DDM
		for DDM ≤0.4
±0 to 0.8 DDM	0.001 DDM	≤3% + 0.002 DDM
for 40% AM		for DDM ≤0.4,
		AF level 0.5 V to 5 V
100 1000 00001	1	
		≤5% for 95% AM
0 to 100 %	0.1 % AM	23 % 101 93 % AM
50 H- 1- 20 LH-		
0 to 100%	0.1% AM	same as base unit
V IU IUU /0	U. 1 70 PMPM	aurile da pase urill
	0 to 360° 0 to 360° 7.9 kHz to 12 kHz 0 to 100% 0 to 100% 384 Hz to 576 Hz 24 Hz to 36 Hz 0 to 100% 50 Hz to 20 kHz 0 to 100% 0 to 180°, referred to 150 Hz 72 Hz to 108 Hz 120 Hz to 180 Hz 50 Hz to 20 kHz 0 to 100% 0 to 50% ±0 to 0.4 DDM for 20% AM 0 to 50% ±0 to 0.4 DDM for 20% AM 0 to 50% 0 to 50% ±0 to 0.8 DDM for 40% AM 400, 1300, 3000 H 0 to 100%	0 to 360° 0.01° 0 to 360° 0.01° 0 to 100% 0.1% AM 0 to 100% 0.1% AM 0 to 100% 0.1% AM 384 Hz to 576 Hz 1 Hz 24 Hz to 36 Hz 0.1% AM 0 to 100% 0.1% AM 0 to 50% 0.1% AM $0 to 50\%$ 0.1% AM 0.001 DDM 0.001 DDM for 20% AM 0.001 DDM $0 to 50\%$ 0.1% AM $0 to 50\%$ <

¹) Difference in Depth of Modulation; describes the modulation depth difference between the 90-Hz and the 150-Hz tone; |DDM| = |{90-Hz modulation in % - 150-Hz modulation in %}|/100%.

Options and their applications

Extensions for basic model

	Option	Order No.	Specifications	
OCXO Reference Oscillator For long-term stability	CMS-B1	0840.9406.02	see time base Aging	2x10 ⁻⁷ /year
OCXO Reference Oscillator For extremely high long-term stability	CMS-B2	1001.6809.02	Specs same as CMS-B1, except for aging	≤1x10 ⁻⁷ /year
Duplex Modulation Meter Allows operation of RF frequency counter and modulation meter independent of RF sig- nal generator (two-port measurements, also on frequency-converting modules); provides tracking generator and cable fault finder	CMS-B59	1032.0990.02	Specs see basic model, except residual FM (does not apply to CMS54, since CMS-B9 is already built-in)	≤10 Hz
Duplex Modulation Meter Same as CMS-B59, plus adjacent-channel power meter, harmonic measurements	CMS-B9	0840.9506.02	Specs see basic model, specs for ACP-meter and harm to page 13	onic measurements please refer
10-MHz Reference Frequency Input/Output External synchronization for measuring sys- tems	CMS-B22	1001.6750.02	Output Input	TTL levels, Z _{out} ≈50 Ω, f=10 MHz level >1.5 V _{pp} , Z _{in} ≈50 Ω, f=10 MHz ± 500 Hz
100-W RF Power Meter Measurement of high RF input power	CMS-B32	1001.7905.02	Max. input power: 100 W for continuous power: 80 W, max sensitivity at input 1 reduced by ≤0.15 dB (P >40 mW, AM=05	output level and measurement / 3 dB; additional error
13-dBm Output	CMS-B34	1032.1350.02	Additional power output for of	f-air measurements
IEC/IEEE-Bus Interface	CMS-B54	1032.0748.02 CMS54 CMS57	Optional for CMS50; interface to IEC625-1/IEEE48	8 with listener/talker function
Protection for Input 2	CMS-B60	1075.5006.02	BNC connector with exchange	able fuse
Carrier Bag for CMS	CMS-Z40	1065.5603.02	Bag for basic unit CMS and a	ccessories

Signalling units for models with Duplex Modulation Meter CMS-B9 or CMS-B59

	Option	Order No.	Specifications
Signalling Unit for Cellular Radio NMT 450 (SIS), NMT 4501, NMT 900 (SIS), E-AMPS, E-TACS, J-TACS, TACS II, R 2000	CMS-B53	1032.0890.02	Simulation of base station for testing cellular mobile phones, e.g. call setup, call cleardown, channel and power change
POCSAG For CMS-B53	CMS-B26	1031.9993.10	Testing of POCSAG radiopaging receivers

Extensions in conjunction with control interfaces

	Option	Order No.	Specifications
300-Hz Lowpass Filter For CMS-B5/-B55; fast frequency and devia- tion measurement of subaudio tones with simultaneous audio modulation	CMS-B33	1032.0290.02	f _{cutoff} =200 Hz, attenuation >50 dB for frequencies above 300 Hz
Adapter for VSWR Measurements In conjunction with CMS-B5 or -B39	CMS-Z37 ¹⁾	1065.4907.02	Connection of Insertion Units NAS-Z1, -Z3, -Z5, -Z6, -Z7 with direct reading of VSWR as well as forward and reflected power

¹⁾CMS-B5 or CMS-B39 required for Insertion Units NAS-Z1/-Z3/-Z5/-Z6/-Z7.

Optional Control Interfaces¹⁾

Order No.	CMS-B5 0841.0502.10	CMS-B55 1032.0790.02	CMS-B20 0841.1209.02	CMS-B39 1032.0090.02	Specifications
DTMF Decoder	•	•	•	•	Decoding of DTMF dual tones and VDEW direct dialling
CCITT Filter	•	•	•	•	
C-Message Filter	_	-	_	-	
Centronics Interface	•	•	•	•	Direct printer connection
Relays	8	_	-	4	Switching relays with max. 1 W switching power, V_{max} =30 V, I_{max} =0.1 A
TTL Input/Output	12	-	_	8	Outputs: 25 mA driver power
DC Ammeter/Voltmeter, floating	_	_	•	_	$\begin{array}{llllllllllllllllllllllllllllllllllll$
600-Ω AF Transformers	_	_	_	•	Output impedance of AF generator and input impedance of AF voltmeter switchable to $600 \ \Omega \pm 10\%$ Frequency range: 100 Hz to 6 kHz Output level: 10 μ V to 2.5 V Max. output current: 4 mA
300-Hz Lowpass Filter	CMS-B33	CMS-B33	-	-	see option CMS-B33
Adapter for VSWR Measurements	CMS-Z37	-	-	CMS-Z37	see option CMS-Z37

¹⁾Choice of one option.

Specifications (Base Unit)

Valid for all models; values in **bold** enclosed by brackets refer to CMS50

Standard Temperature effect 0 to 35°C Aging

Options CMS-B1 and -B2 Temperature effect 0 to 50°C Aging

Warmup time (25°C)

Receiver measurements

Signal generator Frequency range CMS54, CMS57

Frequency resolution Frequency error Leve FM, φM, CW AM

Level resolution Fine variation of level FM, φM, CW AM level error

Harmonics Nonharmonics

Residual AM (CCITT, RMS) Residual FM (CCITT, RMS) 0.4 to 250, 500 to 1000 MHz 250 MHz to 500 MHz Phase noise

Modulation

Frequency range AM modulation depth Resolution Mod. frequency range

Mod. distortion (m <0.8)¹) Mod. error $(m < 0.8)^1$

FM deviation

Resolution

Mod. frequency range

Mod. distortion Mod error φM deviation (internal)

Resolution

Mod. frequency range Mod distortion Mod error

Modulation modes

AF voltmeter

Frequency range Measurement range Resolution

Error²) Input impedance

Distortion meter, SINAD meter, AF frequency counter

≤1 x 10⁻⁶ ≤1 x 10⁻⁷/day ≤1 x 10⁻⁶ /month ≤2 x 10⁻⁶ /year

≤1 x 10⁻⁷ ≤5 x 10⁻⁹/day after 30 days of operation $\leq 2 \times 10^{-7}$ /year (CMS-B2: $\leq 1 \times 10^{-7}$) approx. 10 min

0.4 MHz to 1000 MHz usable from 100 kHz 10 Hz same as timebase

-134 dBm to 0 dBm -134 dBm to -3 dBm (depending on modulation depth) 0 1 dB

0 to -19.9 dB, non-interrupting 0 to -4.9 dB, non-interrupting ≤ 2 dB (for levels -128 dBm to -3 dBm, f > 1 MHz)¹) <-25 dBc <-50 dBc (>5 kHz from carrier, level -3 dBm) . ≤0.03% (≤**0.1%**)

≤10 Hz (≤10 Hz) ≤5 Hz (≤10 Hz) ≤–110 dBc/Hz (20 kHz from carrier)

0.4 MHz to 1000 MHz 0 to 99% 0.5% DC to 10 kHz, (15 Hz to 10 kHz) f <8 MHz; DC to 20 kHz, f≥8 MHz ≤2%, f_{AF} = 1 kHz \leq 5% + resolution + residual AM, f_{AF} = 300 Hz to 3 kHz 0 to 100 kHz (50 Hz to 50 kHz) $(f_{RF} = 250 \text{ to } 500 \text{ MHz}, 0 \text{ to } 50 \text{ kHz})$ 1 Hz, $\Delta f < 100 \text{ Hz}$ 1%, ∆f ≥100 Hz 20 Hz to 20 kHz (suitable for POCSAG) $\leq 1\%$ (f_{AF} = 1 kHz; Δf = 10 kHz) $\leq 5\%$ + resolution + residual FM 0 to 10 rad $(f_{RF} = 250 \text{ to } 500 \text{ MHz}, 0 \text{ to } 5 \text{ rad})$ 1 mrad, Δφ <0.1 rad 1%, Δφ ≥0.1 rad 100 Hz to 6 kHz $\leq 1\%$ (f_{AF} = 1 kHz; $\Delta \phi$ = 1 rad) \leq 5% + resolution + residual ϕ M

internal (single-tone/two-tone), external, internal + external

50 Hz to 20 kHz 0.1 mV to 30 V 100 µV, V <10 mV 1%, V ≥10 mV <5% + resolution approx. 1 $M\Omega$

see transmitter and receiver measurements

Transmitter measurements

RF power meter

Frequency range Measurement range Error (P > 20 mW, AM = 0%) Resolution

Selective level measurement

Level range

RF frequency counter

Frequency range Input level range Resolution Frror

Frequency deviation meter Operating modes

Input level range RF frequency range Deviation measurement range AF frequency range

Resolution

Residual FM (CCITT, RMS) 0.4 to 250, 500 to 1000 MHz 250MHz to 500 MHz Error²)

Phase deviation meter

Operating modes Input level range RF frequency range Phase deviation measurement range AF frequency range Resolution

Error²)

AM depth meter

Operating modes Input level range RF frequency range AM depth measurement range AF frequency range Resolution

Residual AM (CCITT, RMS) Error (m ≤ 0.8)²)

Distortion meter, SINAD meter, AF frequency counter

RF spectrum monitor for CMS50 (for CMS54/CMS57 see page 13) Frequency range Reference level Display dynamic range at input 1) Span Filters (3-dB bandwidth) Error

Resolution

Reference level

Tracking generator (with CMS-B59/-B9) Frequency range

Display dynamic range Span Filters (3-dB bandwidth)

Error

Resolution Output level Frequency offset

1.5 MHz to 1000 MHz 5 mW to 50 W^3) (100 W optionally) \leq 0.4 dB of rdg + resolution 1 mW, P <100 mW 1%. P >100 mW in frequency range 1 MHz to 1000 MHz -60 dBm to +47 dBm without weighting filter, -80dBm to +47 dBm with 2-kHz resonance filter

0.5 MHz to 1000 MHz 5 mW to 50 W³) 10 Hz, 1 Hz same as timebase + resolution

+PK, -PK, ±PK/2, PK HOLD, RMS, RMS√2 5 mW to 50 W³) 1.5 MHz to 1000 MHz 0 to 100 kHz (0 to 50 kHz) 20 to 20 kHz (20 to 15 kHz) (DC-coupled at demodulator output) 1 Hz, ∆f <1 kHz 1%, ∆f ≥1 kHz

<10 Hz ≤5 Hz (≤10 Hz) ≤5% + resolution + residual FM

+PK, -PK, \pm PK/2, RMS, RMS $\sqrt{2}$ 5 mW to 50 W³ 1.5 MHz to 1000 MHz 0.001 rad to 5 rad 300 Hz to 6 kHz 0.001 rad, ∆φ ≤0.1 rad 1%, Δφ >0.1 rad same as frequency deviation meter + 2% frequency response

+PK, -PK, $\pm PK/2$, RMS, RMS $\sqrt{2}$ 20 mW to 50 W³) (PEP) 1.5 MHz to 1000 MHz 0.01% to 99% 50 Hz to 20 kHz (50 Hz to 10 kHz) 0.01%, m <0.1 0.1%, m ≥0.1 ≤0.03% ≤7% + resolution + residual AM $(f_{AF} = 0.3 \text{ to } 3 \text{ kHz})$

see transmitter and receiver measurements

1 MHz to 1000 MHz +47dBm to -47 dBm (input 1) >60 dB (for reference level >-7 dBm 0 (zero span) to 50 MHz 150 Hz, 6/16/50/300 kHz (coupled to span) <3 dB + resolution 0 4 dB

400 kHz to 1000 MHz –27 dBm to –67 dBm 50 dB (1 MHz to 500 MHz) 45 dB (500 MHz to 1000 MHz) 0 (zero span) to full span 150 Hz, 6/16/50/300 kHz, 1/3 MHz (coupled to span) <3 dB (relative measurement <0.5 dB) 0.4 dB 0 to -128 dBm 0 to ±999 MHz (depending on span and center frequency)

Transmitter measurements at 2nd RF input

Measurement of RF frequency, modulation (AM, FM, ϕ M), modulation fre-quency and RF spectrum (level) of small RF signals, e.g. in off-air or module measurements, for input levels from approximately RF frequency counter

RF frequency counter	$30 \mu\text{V}$ (select. counter with presetting)
CM\$54, CMS57	-40 dBm to +7 dBm (without preset-
	ting)
Modulation meter	5 μV (IF narrow)
	1 μV (IF narrow, select. measurement)
Selective level measurement	–75 dBm to –35 dBm without weight-
	ing filter, –100 to –35 dBm with
	2-KHz resonance filter

Transmitter and receiver measurements

Modulation generator I and II Frequency range

Frequency resolution Error Output level range

Resolution

Error Output impedance Max. output current (peak) Distortion

Distortion meter

Frequency

Input level range Measurement range Resolution Inherent distortion Weighting bandwidth Error

SINAD meter Frequency

Measurement range Input level range Resolution Weighting bandwidth Error

AF frequency counter Operating modes

Frequency range

Input level range Resolution Error

Oscilloscope Bandwidth

Horizontal deflection Vertical deflection

Input level range Input impedance

AF filters Highpass

Lowpass

Bandpass broadband narrowband

Notch filter

CCITT filter

20 Hz to 30 kHz (usable from 1 Hz) (20 Hz to 20 kHz) . 0.1 Hz same as timebase + $1/_2$ resolution 10 μ V to 5 V, f_{AF}=20 Hz to 20 kHz 10 μ V to 2.5 V, f_{AF}=20 Hz to 30 kHz 10 μ V to 2.5 V, f_{AF}=20 Hz to 30 kHz 10 µV, V <1 mV 1%, V≥1 mV ≤5%, V >1 mV ≤4 Ω 20 mA ≤0.5%

100 Hz to 5 kHz (100 Hz to 3 kHz) (in 10-Hz steps) 100 mV to 30 V 0.1% to 50% 0.1% ≤0.5% ≤12 kHz ≤5% + inherent distortion

100 Hz to 5 kHz (1 kHz ±10 Hz) ±10 Hz 1 dB to 46 dB 100 mV to 30 V 0.1 dB ≤12 kHz ≤1 dB + inherent distortion

demodulation, AF, beat (frequency offset), external 20 Hz to 500 kHz (**20 Hz to 20 kHz**) (superimposed RF) 10 mV to 30 V, f <20 kHz 1 Hz/0.1 Hz same as timebase + resolution

DC: DC to 20 kHz AC: 10 Hz to 20 kHz 20 ms/div to 0.1 ms/div scaled in kHz (FM), rad (ϕ M), % (AM), mV/V (AF) $0 \dot{V}_{p}$ to $40 \dot{V}_{p}$ approx. 1 MΩ

 f_{cutoff} = 300 Hz, attenuation at 200 Hz typ. 40 dB f_{cutoff} = 3.4 kHz, attenuation at 10 kHz typ. 40 dB highpass + lowpass 50 Hz to 5 kHz (100 Hz to 3 kHz) in 10-Hz steps, attenuation typ. 40 dB for 0.8f and 1.2f 100 Hz to 5 kHz (100 Hz to 3 kHz) in 10-Hz steps, attenuation typ. 40 dB see options CMS-B5 or CMS-B20

Selective call coder/decoder Tone sequences CDCSS coder	ZVEI1/ZVEI2/CCIR/EIA/EEA/ EURO/ NATEL/CCITT/VDEW/ DTMF/user-defined sequences (DTMF decoding see control interface) entry of 3-digit code number of mo- bile radio, setting the times for turn-off code and RF level drop, setting the data deviation
Audio monitor (loudspeaker)	demodulated signal, AF signal, beat (frequency offset)
General data	
IEC/IEEE bus (optional for CMS50)	interface to IEC 625-1/IEEE 488 with listener/talker function
Rated and operating temperature range Storage temperature range Environmental resistance Temperature	0 to +50°C -40°C to +70°C complies with IEC 68-2-1 and IEC
Climatic (damp heat)	68-2-2 +25°C/+40°C cyclically with 95% rel. humidity; complies with IEC 68-2-30
Mechanical resistance Sinusoidal vibration	5 Hz to 150 Hz, max. 2 g at 55 Hz, 0.5 g at 55Hz to 150 Hz
Standards complied with	IEC 68-2-6 and IEC 1010-1 as well as MIL-T-28800D class 5
Random vibration Shock Standards complied with	10 Hz to 300 Hz, acceleration 1.2 g rms 40 g shock spectrum MIL-STD-810C and MIL-T-28800D
EMC	class 3 and 5 complies with EMC directive of EU (89/336/EEC) and German EMC
Safety Power supply	regulations complies with EN 61010-1 (100/120/220/240) V AC ±10%, 47 Hz to 420 Hz or 11 V to 32 V DC (50 W)
Dimensions (W x H x D)	320 mm x 175 mm x 375 mm (12.6" x 6.9" x 14.8")
Screen size Weight	approx. 210 mm x 100 mm (9") approx. 13 kg (28.6 lbs) without options approx. 15 kg (33 lbs) with options
Ordering information	

Ordering information

Radiocommunication Service Monitor CMS50 CMS54 CMS57	0840.0009.50 0840.0009.54 0840.0009.57	
Accessories supplied	power cable, spare fuses, manual	
Options	see pages 16 and 17	
Recommended extras Memory Card 32 Kbyte 128 Kbyte 19" Adapter Transit Case Service Manual Carrier Bag	CMS-Z1 CMS-Z2 ZZA-99 ZZK-011 CMS-Z40	0841.1609.02 0841.1509.02 0839.5775.00 1013.9543.00 0840.8616.24 1065.5603.02

¹) Fine variation of level 0 dB.

²) Without weighting filters.

³) Input level max. 30 W for any RF output level, max. 50 W for RF output level <-26 dBm.

