
AF Generator 1 Hz to 260 kHz APN

- Synthesizer
- 50 μV to 20 V balanced and unbalanced
- Source impedance settable to values between 10 Ω and 640 Ω

AF Test Set APN

with integral voltmeter 50 μV to 50 V

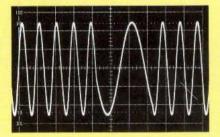
- Floating
- True rms at
 - generator output
 - test input

CHARACTERISTICS

- Synthesizer generator 1 Hz to 260 kHz
- Frequency setting without transients
- Output voltage range 50 μV to 20 V
- Adjustable source impedance 10 to 640 Ω in 5-Ω steps entered via keypad
- Low distortion
- Frequency and level sweep
- APN 04: AF test set with signal generation and signal measurements by integral voltmeter
- Output configurations balanced, floating balanced, grounded unbalanced
- Reference-frequency input/output for external synchronization (option APN-B1)
- Voltage proportional to frequency or level (option APN-B1)

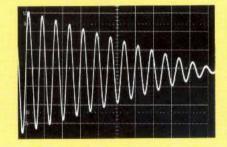
Frequency resolution 1 Hz over the whole range,

0.1 Hz at frequencies below 20 kHz


Frequency accuracy fully digital signal generation,

error less than 4 x 10-5, minimal drift, equal to that of the

crystal reference


Frequency setting

phase-continuous, no settling time, response time < 15 ms

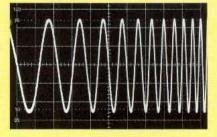
Level sweep

continuous electronic sweep over 20 dB, START, STOP, STEP, TIME/STEP selectable

Source impedance

the 10- to 640-Ω range is covered in 5-Ω steps. A single, user specific value can be added

Other signal shapes


triangular, square and sawtooth from 1 Hz to 20 kHz

Frequency sweep

Output voltage

Output

fast. phase-continuous, synthesizer accuracy, START, STOP, STEP, TIME/STEP selectable

Synchronization output

TTL/HCMOS logic signals having

Operation

the same frequency as the output signal

via keypad and spinwheel

Memory

non-volatile storage of 20 complete front-panel setups

Display

alphanumeric display for all

parameters and operating modes

short-circuit-proof,

50 μV to 20 V (50 μV to 10 V when Z_{load} = Z_{source}), the units available

are: V, dBV or dBm as EMF or as

a voltage of up to 50 V can be superimposed on the balanced,

floating output

Vload

Remote control

for all functions; talker mode for reading out frequency, output voltage, source impedance and voltmeter display

Models and option

There are three versions of the Generator APN, and an option which can be fitted to each model.

APN 02 Generator 1 Hz to 260 kHz, synthesizer, output configurations: balanced floating, balanced grounded, unbalanced

APN 04 Like the APN 02, but with integral voltmeter for measuring the output voltage or external voltages. It has a remote-control interface to IEC 625 – 1 and IEEE 488

APN 06 Like the APN 02, but with square signal in the frequency range 1 Hz to 260 kHz and variable level. It has a remote-control interface to IEC 625 – 1 and IEEE 488

Option Reference-frequency input/output for external synchronization and to obtain an output voltage proportional to frequency or level

Voltage (V, dBV, dBu)

EMF (V, dBV, dBu) Power (dBm) the voltage across a resistance R_{load} = R_{source} is set and displayed the EMF is set and displayed the power dissipated by a resistance R_{load} = R_{source} is set and displayed

Signal quality

Over the whole of the audio range to 20 kHz, distortion is below 0.05 %; up to 100 kHz it is below 0.1 %. When a DUT requires a balanced feed, the exact balance of the two signal components is of utmost importance. The fully balanced design of the two output signal branches ensures this. The unbalance caused by residual signals is more than 60 dB below the set signal level.

Source impedance

The APN's source impedance can be set to any value between 10 Ω and 640 Ω in 5- Ω steps and so covers practically the complete range of system impedances.

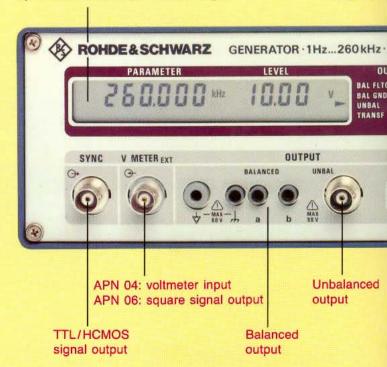
Output configurations

The APN's output signal can be balanced floating, balanced grounded or unbalanced grounded. Balanced signals are required for telephone systems and acoustic measurements.

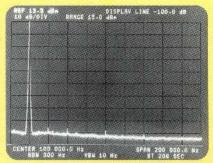
Characteristics and uses

Frequency range 1 Hz to 260 kHz

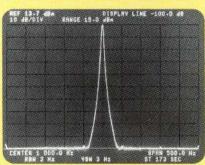
Frequency generation is completely digital. The advantages of this are:


The output signal has crystal accuracy, high frequency resolution and fast phase-continuous frequency adjustments without transients. All these features make possible a sweep which is indistinguishable from a true analog sweep. Thanks to the high frequency resolution of 1 Hz over the whole range and 0.1 Hz in the range below 20 kHz, measurements on extra narrow bandwidth DUTs such as crystal filters are possible. The 0.1 Hz resolution allows the use of tone sequences to all known standards. Error-free measurements on filters with steep skirts or on narrowband DUTs are only possible if frequency adjustments are phase-continuous — this is the case with the APN.

Output voltage 50 µV to 20 V


The output signal is generated by means of D/A conversion so ensuring an extremely high level accuracy. Because of the low minimum level, all the levels likely to be required in practice can be obtained without the use of external attenuators. For checking the linearity of amplifiers and for dynamic tests on ALC circuits, the signal can be swept over 20 dB without interrupting the level. The start and stop level, the step size and the step time are selectable. The output level can be set in V, dBV, dBu or dBm. There are three possibilities:

Display showing current settings, option fitted, the IEC-bus address, special functions and error messages


Selecting output cor

GENERATOR APN

Measured spacing for harmonics > 80 dB, signal 20 kHz, 10 V into 50 Ω , resolution 20 kHz/div.

Good suppression of sidebands produced by the AC line and microphonism; signal 1 kHz, resolution 50 Hz/div. Voltmeter data:

Measurement range INT operating mode - 50 μV to 50 V

 measures the voltage between balanced output terminals a and b;

 measures the voltage between the inner and outer conductors of the

coaxial output

EXT operating mode

 measures the voltage between the inner and outer conductor of the (floating) V-METER_{EXT} input

Display

 voltage or power at output terminals; when dBm is selected, the power dissipated in R_{load} = R_{source}

is shown

Trend display

 when there is a voltage change, the trend is shown by UP or

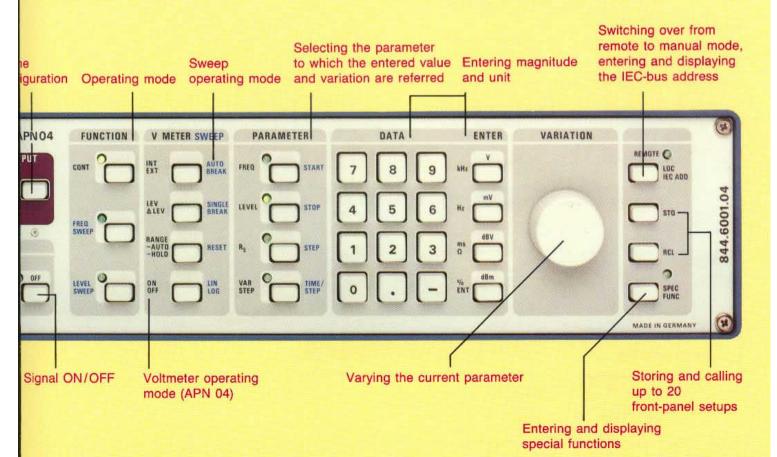
DOWN symbols

∆-display

 shows the difference between measured result and a reference in

V or dB

Additional features of models APN 04 and APN 06


APN 04

When a level is entered, the level shown by the display is only the same as the level across the load when the load impedance is equal to the source impedance. If the load impedance is not known, the voltage drop must be measured. Using the APN 04's integral voltmeter (true RMS, AUTO RANGE, RANGE HOLD), the display always shows the true load-dependent output voltage. The voltmeter has its own input for measuring external voltages.

To process the results using analog methods, a voltage which is proportional to the result is output. Numerical processing can be performed using the IEC bus in talker mode. Thanks to its integrated test functions, the APN 04 is an ideal, handy AF test set for determining the transmission characteristics of AF paths and control systems.

APN 06

As well as sinusoids, the APN 06 can generate square signals whose level can be adjusted. These signals are output at a separate connector. The unit is also ideal as a stimulus for bipolar logic, for use in digital control systems and for overload measurements on analog devices.

APPLICATIONS

Range of applications

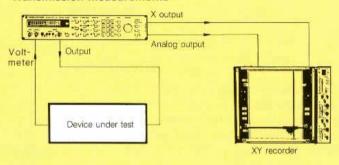
Routine lab and service dept measurements

Advantages of the APN

high output voltage, flat frequency response, frequency and level sweep, synthesizer accuracy, integral voltmeter

Radiotelephone measurements (test systems, multi-tone modulation, selective-call tone sequences, SSB) high frequency resolution, no phase hits when frequency changed, synthesizer accuracy, integral voltmeter

Ultrasound measurements

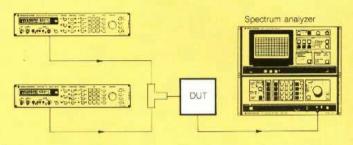

synthesizer accuracy, external synchronization

possible, high output level

Automation and control

frequency and level sweep, floating output, high voltage, square signal with adjustable level

Transmission measurements



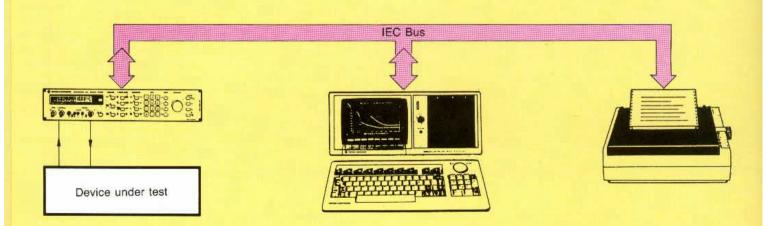
Telemetry fast frequency selection with no settling time

Acoustics (loudspeakers, microphones)

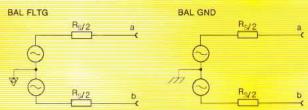
low distortion, selectable source resistance, floating and balanced output configurations, frequency sweep

Distortion measurements

AF transmission systems


(telephone)

floating and balanced output configurations


Determining the load impedance selectable source impedance, simultaneous display of load voltage and EMF (V_{load} = 1/2 EMF if R_{source} =

selectable source impedance

Rload)

SPECIFICATIONS

Frequency Range 1Hz to 260 kHz 1Hz, 0.1 Hz at f < 20 kHz Resolution

Switching time (after reception of last character via IEC bus)
Frequency error (after 10 min warmup 15 ms <4 x 10⁻⁵ + aging error <10⁻⁵/year Aging

Signal output

entry via keypad (nominal values >640 Ω to customer specifications) 10 to 640 Ω in 5- Ω steps 2 \times (5 to 320 Ω) in 2,5- Ω steps 10 to 640 Ω in 5- Ω steps \leq 2 Ω Impedance Balanced, floating ... Balanced, grounded Unbalanced Impedance error Level Units V, dBV, dBm $100 \mu V$ to 20 V EMF, $I_{max} = 200 mA (10 V into <math>50 \Omega)$ $2 \times (50 \mu V$ to 10 V) EMF, $I_{max} = 200 mA (2 \times 5 V into <math>25 \Omega)$ $100 \mu V$ to 20 V EMF, $I_{max} = 200 mA (10 V into <math>50 \Omega)$ Balanced, floating Balanced, grounded Unbalanced

at least 10 μV or 0.1 dB < ± 0.5 dB < 0.5 dB Level resolution Total level error Frequency response
Attenuator error
Level setting time (after reception of last character via IEC bus) < 0.3 dB Connectors Balanced ... Unbalanced 3-contact female, DIN 41628 BNC

Spectral purity

10 Hz to 100 kHz < -60 dBc (< 0.1 %, typ. -70 dBc) Sum 2nd to 9th harmonic 10 Hz to Harmonics and nonharmonics20

< - 46 dBc (< - 55 dBc typ.)

0 to 5 V (option APN-B1)

100 to 260 kHz SYNC output

same as signal output Frequency Duty cycle Level ... TTL/HCMOS Impedance 50 Ω

Sweep, frequency Digital start-stop sweep

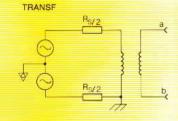
Operating modes automatic after sawtooth or automatic after sawtoom or triangular signal, single shot, manual with knob, lin or log any value from 1 Hz to 260 kHz any value ≥ 1 Hz (lin) or 1 ‰ (log) any value between 1 ms and 65 s Sweep range Stepwidth Step time Output voltage proportional to

frequency Sweep, level Digital start-stop sweep

Operating modes Sweep range as above any value ≤ 20 dB any value above ≥ 10 μV (lin) or 0.1 dB (log) Stepwidth any value between 2 ms and 65 s Output voltage proportional to level 0 to 5 V (option APN-B1)

APN models Model 02

Generator 1 Hz to 260 kHz


Model 04 Generator 1 Hz to 260 kHz; with voltmeter and IEC connector

digital display, INT/EXT selectable, voltage difference measurements in V or dB, trend display 50 μV to 50 V 31/2 digits Function (true RMS) Measurement range (VRMS) Display

Resolution 10 μV Measurement error < ± 0.5 dB (5 Hz to 200 kHz) < ± 1 dB (5 Hz to 260 kHz) (crest factor < 3) Input impedance

 $>\!$ 100 k Ω 0 to 10 V, proportional to measured value Analog output ...

UNBAL

Generator 1 Hz to 260 kHz; sine and Model 06 square signal with adjustable level; IEC-bus connector

0 to 10 V into 100 Ω < 100 ns < 5 % < 5 % Square signal Rise / fall time Over/undershoot Tilt (f>500 Hz)

provided for models 04 and 06 IEC 625 - 1 (IEEE 488) 24-contact, Amphenol all front-panel functions that can be Remote control System

Connector Remote-controllable functions set manually, except power ON/OFF and variation

set via keypad, 00 to 30 listener and talker SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT0, C0 IEC-bus address . . Interface functions

Option APN-B1: reference-frequency input/output and output voltage proportional to level or frequency

5 or 10 MHz, selectable Input/output frequency > 0.2 V into 50 Ω 0.2 to 2 V into 50 Ω or Output level TTL/HCMOS

X-output 1 Hz ... 260 kHz 0 V 5 V For sweep (frequency and level)
Start Stop 5 V

Extra specifications

SINAD (signal to noise and distortion), typical measured values at I=1 kHz and R_{source} level 1 V and 100 μ V, balanced and unbalanced R_{load} = 600 Ω, signal

100 μV 1 V Bandwidth 22 Hz to 22 kHz Weighted to CCITT Weighted to CCIR 40 dB 50 dB 80 dB 84 dB 70 dB 32 dB

General data Rated temperature range ... Storage temperature range Power supply

0 to +55 °C -40 to +70 °C 100/120/220/240 V ± 10 % 47 to 440 Hz, safety class I to VDE 0411 (IEC 348) shock-tested to DIN 40046, part 7 (30 g, 11 ms) and vibration tested to DIN 40046, part 8 (5 to 55 Hz, 2g); corresponds to IEEE 68 - 2 - 27 and 86 - 2 - 6 435 mm x 103 mm x 350 mm, 7.5 kg Mechanical resistance

Dimensions (B x H x D), weight

Ordering information

► Generator APN Order designation APN 02 844,6001.02 APN 04 APN 06 844.6001.04 844,6001.06 power cable, manual Supplied

Options

Reference-frequency input / output and output voltage proportional to

frequency or level APN-B1 Transformer 1:3, APN-B2 Transformer 1:1, APN-B2 844.9700.02 844.9700.04

Recommended extras

396.4886.00 ZZG - 92 396.5147.00 Feed-through Termination 50 Ω Feed-through Termination 100 Ω Feed-through Termination 600 Ω Two-core cable, shielded, balanced RAD 50 . RAD 100 844.9352.02 844.9400.02 **RAD 600** 844 9452 02 with 3-contact connector and 3 banana plugs Service Kit with test connector for unbalance measurements and APN-Z1 884.9652.00 a floppy disk for checking the instrument APN-Z5

1) Level > 10 mV (EMF), frequency > 5 Hz 2) Level > 100 mV (EMF)

Model 62 model APN 62 is a modified version of

the APN 06. It contains an output trans-

former and has different AC supply

voltage ranges

Transformer

20 Hz to 25 kHz Frequency range

 $2 k\Omega$ Impedance

Level resolution min. 10 µV or 0.1 dB

Total level error¹⁾ < ±1.0 dB Frequency response <1.2 dB Attenuator error < 0.6 dB

3-contact female, balanced, DIN 41628 Connector

General specifications

Power supply 94 to 127 V, 188 to 265 V

45 to 440 Hz

All other specifications are the same as those of the APN 0621

Order designation ▶ Generator APN 62

844.6001.62

Recommended extra:

¹⁾Level > 10 mV (EMF), frequency > 20 Hz

²⁾ with the exception of SINAD extra specifications at the condition: level 100 μV/unbalanced