Amplifiers

AM 502

Differential Amplifier

AM 501

Operational Amplifier

Bandpass Filter/Amplifier

AM 502

1 to 100,000 Gain

100 dB Cmrr

Selectable Upper and Lower -3 dB Points

Dc to 1 MHz Maximum Bandwidth

Adjustable Dc Offset

The AM 502 Differential Amplifier features wide bandwidth; high cmrr; and selectable calibrated gain and filtering. Well-suited for general-purpose or laboratory work, it can drive oscilloscopes, monitors, chart recorders, displays, or processing devices. In the unity gain mode, it can be used as a signal conditioner. Input dc offsetting to ±1 V is provided.

AMPLIFIER

Gain - 100 to 100,000, 1-2-5 sequence, accurate within 2%. 1X gain obtained by 100X attenuation.

Hf -3 dB POINT - Selectable in 9 steps (1-3 sequence) from 100 Hz to 1 MHz. Upper -3 dB point reduces to 500 kHz at 50 k gain, 250 kHz at 100 k gain. Hf -3 dB POINT - Selectable in 6 steps from 0.1 Hz to 10 kHz; ac coupling limits -3 dB point to 2 Hz

Dc Offset - At least ±1 V.

Normal-Mode Cmrr - At least 100 dB, dc to 50 kHz, range, ±5 V.

÷ 100 Mode Cmrr - At least 50 dB, dc to 50 kHz, range, ±50 V.

Max Input Voltage - Normal mode dc coupled: 15 V (dc + peak ac), \div 100 Mode dc coupled: 350 V (dc + peak ac). Ac coupled: 350 V (dc + peak ac) with coupling capacitor precharged.

Input R and C — 1 M Ω paralleled by approx 47 pF. Input impedance can be increased to a FET input via a simple internal jumper change.

OUTPUT

Max Output - ±5 V, ±20 mA, output resistance is 5 Ω or less.

Min Load Impedance — 250 Ω .

Input Gate Current - Typically 50 pA at 25°C.

Max Noise — \leq 25 μ V or less (tangentially measured) referred to input NORM mode.

Overage - Front-panel lamp indicates most overrange conditions.

Max Voltage Drift - 100 μV/°C referred to input NORM mode.

Order AM 502 Differential

Amplifier\$975

AM 501

±40 V, 50 mA Output

Open Loop Gain 10,000

50 V/μs Slew Rate

Symmetrical Differential Design

The AM 501 Operational Amplifier features high input impedance (FET), high slew rate, a wide range of input and output voltage, and high output current. Applications include: amplification; impedance transformation; integration; differentiation and summing. It is well-suited as a post-amplifier or offset-generator for signal sources, including the TM 500 Modules. Components may be added externally or internally making it ideal for teaching operational amplifier theory.

OPERATIONAL AMPLIFIER

Open Loop Gain — At least 10,000 into 800 Ω load. Unity Gain Bandwidth — At least 5 MHz into 800 Ω haol.

Common-Mode Rejection Ratio - At least 10,000 to 1 at 60 Hz.

Siew Rate — At least 50 V/ μ s into a 800 Ω load.

INPUT

Common-Mode Input Voltage Range - At least ±40 V. Input Leakage Current - Less than 500 pA at 20°C. Equivalent Input Drift — Less than 100 μ V/°C. Equivalent Input Noise — Less than $10\mu V$ RMS. Max Differential Input Voltage --- 80 V.

OUTPUT

Voltage Range - At least ±40 V. Current Limit - At least ±50 mA. Open Loop Output R -- Approx 150 Ω .

Order AM 501 Operational Amplifier ...\$490

OPTIONAL ACCESSORY

Terminal Accessory Adapter Kit

AF 501

Tunable Bandpass Filtering to 35 kHz

Signal Amplification to 50 kHz

Sine-wave Generation to 35 kHz

Strobe Trigger Synced to Oscillator or **Filter Output**

Dial Readings in Hz or Cycles per Minute

The AF 501 is a Bandpass Filter/Amplifier, ac-coupled amplifier and sine-wave generator. Used alone or in conjunction with other TM 500 Instruments, the AF 501 is a highly versatile and accurate signal analysis tool. Developed primarily for the mechanical measurement domain, the AF 501 can be used as a manual-sweep spectrum analyzer for complex sound and vibration signals. Singlefrequency tuning faciltates isolation of 1X rpm signals in dynamic balancing, or viewing higher order disturbances on a CRT monitor. An output pulse, synced to the filter or oscillator output signal, is available for triggering a stroboscope or oscilloscope and for frequency counting.

BANDPASS FILTER

Center Frequency Range — 3 Hz to 35 kHz in 4 decade steps.

Frequency Dial Error — <5% dial setting between 3-20, <10% dial setting between 20-30.

Frequency Multiplier - X1, X10, X100, X1 k.

Phase Shift - <10° at tuned frequency below 5 kHz.

Dial Range — 3 to 40 Hz/180-2400 cpm. Max Filter Attenuation — >70 dB.

Filter Selectivity - Broad: Q = 5 ±1.

Narrow: Q = 15 ±5.

Bandwidth at Half-power Points ---

 $\Delta F_{-3 dB} = \frac{\text{center frequency}}{}$

Gain Range — 1-500; 1-2-5 sequence.

Gain Accuracy - ± 3 dB (Broad), ± 5 dB (Narrow).

input impedance — 1 M Ω ±1% paralleled by \approx 47 pF.

Max Dc Input Voltage - ± 100 V.

Output Voltage — 20 V p-p (max freq times amplitude = 400 V kHz).

Output Current-20 mA p-p max (at 20 V p-p).

Output Impedance — $<1 \Omega$.

AMPLIFIER

Gain - 1 to 500; 1-2-5 sequence.

Gain Accuracy -- ±3%.

Bandwidth - <0.5 Hz to >50 kHz (at 3 dB point). input impedance — 1 M Ω ±1% paralleled by \approx 47 pF.

Noise — <25 mV rms (referred to output).

Output Voltage - 20 V p-p (max freq times amplitude

== 400 V kHz).

OSCILLATOR

Sine Wave Out Range - 3 Hz to 35 kHz.

Dial Range — 3 to 40 Hz/180-2400 cpm.

Output Amplitude — 1, 2, or 5 V p-p ±20%, depending on gain position.

Waveform Distortion - <3%.

Output Current - Max 50 mA p-p.

Output Impedance — <1 Ω (within 50 mA output current limit).

TRIGGER OUTPUT

Pulse Amplitude - >10 V. Pulse Duration -- 10 ±5 us.

Min Signal Required - 500 mV, p-p Rise and Fall Time -- <1 us

Output Impedance — \approx 50 Ω .

Order AF 501 Bandpass Filter/Amplifier\$775