7½-Digit High Performance Multimeter 8½-Digit High Performance Multimeter

- True 7½- (Model 2001) or 8½-digit (Model 2002) resolution
- Exceptional measurement integrity with high speed
- High speed function and range changing
- Broad range of built-in measurement functions
- Multiple measurement display
- Built-in 10 channel scanner option
- IEEE-488.2 and SCPI compatible
- HP3458A emulation mode (Model 2002)

DMM users whose applications demand exceptional resolution, accuracy, and sensitivity combined with high throughput now have two attractive alternatives to high priced, high end DMMs. Keithley's 7½-digit Model 2001 and 8½-digit Model 2002 High Performance Digital Multimeters not only deliver performance specifications usually associated with instruments that cost thousands more, but they also offer a broad range of functions not typically available from DMMs. The 2002 is based on the same superior measurement technology as the 2001, and the front panels of both instruments have the same look, feel, and response.

True 71/2- (or 81/2-) Digit Resolution

While other DMMs may claim $7\frac{1}{2}$ - or $8\frac{1}{2}$ -digit resolution, they must average multiple readings to extend their resolution. The resolution specifications of the 2001 and 2002 are based on a 28-bit A/D converter that provides the resolution needed to discern smaller changes. This higher resolution also provides greater dynamic range, making it possible to measure from $1\mu V$ to 20V on a single range, thus avoiding range-shift errors and delays.

Built-In Scanner (Multiplexer) Options

With the addition of a plug-in scanner card, the 2001 or 2002 becomes a complete scan and measure system for applications involving up to ten

measurement points. The additional resolution and measurement ranges provided by the 2002 make it an excellent choice for production test, design verifi-

cation, and metrology applications where high accuracy is critical.

High Accuracy ACV Measurements

A patented circuit design makes the 2001 and 2002's AC measurements several times more accurate than competitive DMMs. In this circuit, the signal bypasses the prime error-contributing section of conventional rms converters. This increases the accuracy at almost any voltage level, and also increases sensitivity down to a guaranteed 1% of the selected range, compared to 5–10% for most other DMMs. The result is highly accurate measurements over a broad range of inputs.

Applications involving vibration, servo, guidance, shock, and control systems often require accurate low frequency ACV measurements. The 2001 and 2002 maintain very good accuracy (better than 0.1%) down to 1Hz. The wide bandwidth of these DMMs allows for accurate measurements of high frequency AC signals without the need for a special AC meter. Both the 2001 and 2002 feature TRMS AC, average AC, peak AC, AC+DC, and crest factor measurement capability for a wide variety of applications.

High Speed for High Throughput

In applications where high throughput is critical, both the 2001 and 2002 provide more than 2000 readings per second at $4\frac{1}{2}$ -digit resolution. At $7\frac{1}{2}$ digits, the 2002 maintains full rated accuracy at reading rates up to 44/second on DCV and ohms.

High Speed, High Precision Resistance Measurements

The Model 2002 uses a unique single-phase method for 4-wire ohms measurements. This makes it twice as fast for a given power line cycle rate. This also eliminates errors due to changing lead resistances that can result from fast test handlers. A built-in open-lead detection circuit also eliminates many production test problems.

Fast, Flexible Triggering

Trigger latency—the delay between trigger and measurement—is often a barrier to higher throughput. Also, variability in latency can complicate predicting measurement timing. The 2001 and 2002 trigger is less than $2\mu s \pm 1\mu s$, which is much faster than typical system DMMs.

Ordering Information

2001 High Performance 7½-Digit DMM with 8K Memory

2002 High Performance 8½-Digit DMM with 8K Memory

2000-SCAN

10-channel Scanner Card

2001-SCAN

10-channel Scanner Card with two highspeed channels

2001-TCSCAN 9-channel Thermocouple Scanner Card

2001/MEM1

High Performance 7½-Digit DMM with 32K Memory

2001/MEM2

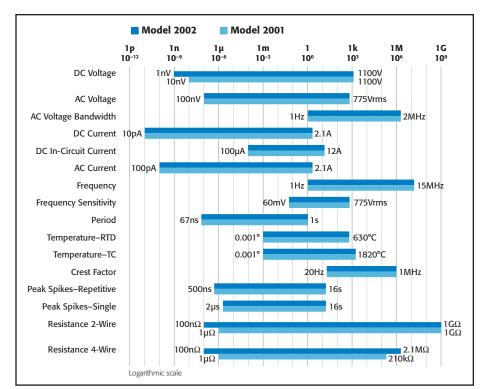
High Performance 7½-Digit DMM with 128K Memory

2002/MEM1

High Performance 8½-Digit DMM with 32K Memory

2002/MEM2

High Performance 8½-Digit DMM with 128K Memory


Accessories Supplied

Model 8605 High Performance Modular Test Leads, user's manual, option slot cover, and full calibration data.

For more information, request the Model 2001 and 2002 Technical Specifications books.

1.888.KEITHLEY (U.S. only) www.keithley.com

7½-Digit High Performance Multimeter 8½-Digit High Performance Multimeter

Both the 2001 and 2002 provide exceptional measurement range. In addition, the 2002 offers extended DCV and resistance measurement capabilities.

The unique Trigger-Link feature included in the Model 2001 and 2002 and most Keithley test and measurement products can be used to coordinate the operation of two or more instruments. Trigger-Link combines six independent software selectable trigger lines on a single connector for simple, direct control over all instruments in a system.

Spot Trends with the Bar-Graph Display

The ability to track reading trends around a target value easily can be just as important as the absolute readings. A unique bar-graph display function in the 2001 and 2002 indicates data as a percentage of the selected range from $\pm 0.01\%$ to $\pm 100\%$. Whether adjusting about zero or any other desired value, this display can replace a nulling differential voltmeter.

Capture Spikes Down to 1µs

Both the 2001 and 2002 have internal peak detectors that can catch $1\mu s$ spikes such as power supply spikes and transients, AC line power surges, and short-duration dropouts on components. These peak detectors operate up to 1MHz for repetitive signals or down to $1\mu s$ for single spikes, so there is no need for a separate scope. The DMMs can automatically display and store the highest value or display the maximum and minimum values of spikes.

Built-in Features and Capabilities

The 2001 and 2002 offer many built-in measurements that are typically unavailable in instruments of this type, including in-circuit current, temperature with thermocouples or RTDs, and peak spikes. Four separate outputs linked to limits simplify configuring the DMMs for use in binning operations.

The built-in AC crest factor measurement helps ensure the accuracy of AC measurements. Other DMMs typically perform AC measurements for signals without excessive crest factor—the ratio of peak value to rms values. However, when crest factor rises, measurements may not meet specs.

7½-Digit High Performance Multimeter 8½-Digit High Performance Multimeter

With a 2001 or 2002, there is no need for an oscilloscope to determine if the crest factor is acceptable—the DMM measures it directly.

While some DMMs calculate average AC from the rms value, these calculations apply only to sine wave inputs. The 2001 and 2002 measure peak value, average and true rms directly to obtain a complete characterization of the signal. This capability makes these DMMs ideal for AC circuit design or test applications and for verifying test voltages specified only in averages.

When measuring AC or digital signals, frequency is critical. The 2001 and 2002 accurately measure frequency up to 15MHz. Accurate triggering on the signal is critical to measure frequency reliably. The frequency counters in the 2001 and 2002 have a fully adjustable trigger level for good measurements of noisy signals.

Multiple Measurement Display

The 2001 and 2002 can display DC and AC volts and the AC frequency from a single measurement connection simultaneously. Several other multiple-measurement displays are available, including crest factor and bar graph. By measuring sequentially and displaying simultaneously, the 2001/2002 operates as if three different meters are working together.

Option Slot Extends DMM Performance

An option slot in the back of the 2001 and 2002 opens the door to a wide range of measurement capabilities. Choose a 10-channel general-purpose scanner card or a 9-channel thermocouple scanner card to make measurements on multiple test points or devices. This can eliminate the need for a separate scanner and significantly reduce programming and setup time.

ACCESSORIES AVAILABLE

TEST LE	ADS AND PROBES
5805	Kelvin Probes, 0.9m (3ft)
5805-12	Kelvin Probes, 3.6m (12ft)
5808	Low Cost, Single Pin, Kelvin Probes
5809	Low Cost, Kelvin Clip Lead Set
8502	Micro-DIN to 6 BNCs Adapter Box with 8501-1 Cabl
8530	Centronics Adapter
8605	High Performance 2-Wire Modular Test Leads
8606	High Performance Modular Probe Kit
8610	Low Thermal Shorting Plug
8680	RTD Probe Adapter
8681	Low Cost RTD

CABLES/ADAPTERS

7007-1	Shielded GPIB Cable, 1m (3.3 ft)
7007-2	Shielded GPIB Cable, 2m (6.6 ft)
7009-5	RS-232 Cable
8501-1	Trigger-Link Cable, 1m (3.3 ft)
8501-2	Trigger Link Cable, 2m (6.6 ft)
8502	Trigger Link Adapter Box
8610	Low Thermal Shorting Plug
8620	4-Wire DMM Shorting Plug
RACK MO	OUNT KITS

GPIR INTERFACES

4288-4

KPCI-488LPA IEEE-488 Interface Controller for the PCI Bus KUSB-488B IEEE-488 USB-to-GPIB Interface Adapter

Single Fixed Rack Mount Kit Side-by-Side Rack Mount Kit

SER	VICES AVAILABLE
2000-SCAN-3Y-EW	1-year factory warranty extended to 3 years from date of shipment
2001/MEM1-3Y-EW	1-year factory warranty extended to 3 years from date of shipment
2001/MEM2-3Y-EW	1-year factory warranty extended to 3 years from date of shipment
2001-SCAN-3Y-EW	1-year factory warranty extended to 3 years from date of shipment
2001-TCSCAN-3Y-EW	1-year factory warranty extended to 3 years from date of shipment
2001-3Y-EW	1-year factory warranty extended to 3 years from date of shipment
2002/MEM1-3Y-EW	1-year factory warranty extended to 3 years from date of shipment
2002/MEM2-3Y-EW	1-year factory warranty extended to 3 years from date of shipment
2002-3Y-EW	1-year factory warranty extended to 3 years from date of shipment
C/2000-3Y-ISO	3 (ISO-17025 accredited) calibrations within 3 years of purchase for Model 2000-SCAN*
C/2001-3Y-ISO	3 (ISO-17025 accredited) calibrations within 3 years of purchase for Models 2001, 2001/MEM1, 2001/MEM2, 2001-SCAN.

2001-TCSCAN*

3 (ISO-17025 accredited) calibrations within 3 years of purchase for Models 2002,

2002/MEM1, 2002/MEM2*

*Not available in all countries

C/2002-3Y-ISO

7½-Digit High Performance Multimeter 8½-Digit High Performance Multimeter

2001 Condensed Specifications

DC VOLTS

DCV INPUT CHARACTERISTICS AND ACCURACY

					Accuracy	±(ppm or	reading	+ ppm o	r range)
			Default	Input	5	24	90	1	2
Range	Full Scale	Resolution	Resolution	Resistance	Minutes ¹²	Hours ²	Days ³	Year ³	Years ³
200 mV ⁴	±210.00000	10 nV	100 nV	>10 GΩ	3 + 3	10 + 6	25 + 6	37 + 6	50 + 6
2 V	±2.1000000	100 nV	$1 \mu V$	>10 GΩ	2 + 1.5	7 + 2	18 + 2	25 + 2	32 + 2
20 V	± 21.000000	$1 \mu V$	$10 \mu V$	>10 GΩ	2 + 1.5	7 + 4	18 + 4	24 + 4	32 + 4
200 V	±210.00000	$10 \mu V$	$100 \mu V$	$10\mathrm{M}\Omega$ ±1%	2 + 1.5	13 + 3	27 + 3	38 + 3	52 + 3
1000 V	±1100.0000	$100 \mu V$	1 mV	$10\mathrm{M}\Omega$ ±1%	10 + 1.5	17 + 6	31 + 6	41 + 6	55 + 6

DC VOLTS NOTES

- 2. For $T_{CAL}\pm 1^{\circ}C,$ following 55-minute warm-up. T_{CAL} is ambient temperature at calibration, which is $23^{\circ}C$ from factory.
- For T_{CAL} ±5°C, following 55-minute warm-up. Specifications include factory traceability to US NIST.
- 4. When properly zeroed using REL function.
- 12. DCV Transfer Stability typical applications are standard cell comparisons and relative accuracy measurements. Specs apply for 10 power line cycles, 20-reading digital filter, autozero on with type synchronous, fixed range following 2-hour warm-up at full scale to 10% of full scale, at $T_{\rm REF} \pm 1^{\circ}{\rm C}$ ($T_{\rm REF}$ is the initial ambient temperature). Specifications on the 1000V range are for measurements within 5% of the initial measurement value and following measurement settling.

AC VOLTS

Normal Mode RMS¹

90 Days, ±2°C from last AC self-cal for 1% to 100% of range³

±(% of reading + % of range)

					,	, , ,				
Range	20-50Hz	50-100Hz	0.1-2kHz	2-10kHz	10-30kHz	30-50kHz	50-100kHz	100-200kHz	0.2-1MHz	1–2MHz
200 mV	0.25 + 0.015	0.07 + 0.015	0.03 + 0.015	0.03 + 0.015	0.035 + 0.015	0.05 + 0.015	0.3 + 0.015	0.75 + 0.025	2 + 0.1	5 + 0.2
2 V	0.25 + 0.015	0.07 + 0.015	0.03 + 0.015	0.03 + 0.015	0.035 + 0.015	0.05 + 0.015	0.3 + 0.015	0.75 + 0.025	2 + 0.1	5 + 0.2
20 V	0.25 + 0.015	0.07 + 0.015	0.04 + 0.015	0.06 + 0.015	0.08 + 0.015	0.1 + 0.015	0.3 + 0.015	0.75 + 0.025	4 + 0.2	$7 + 0.2^{5}$
200 V ⁴	0.25 + 0.015	0.07 + 0.015	0.04 + 0.015	0.06 + 0.015	0.08 + 0.015	0.1 + 0.015	0.3 + 0.015	$0.75 + 0.025^{5}$	$4 + 0.2^5$	
750 V ⁴	0.25 + 0.015	0.1 + 0.015	0.08 + 0.015	0.09 + 0.015	0.12 + 0.015	$0.15 + 0.015^{5}$	$0.5 + 0.015^{5}$			

AC VOLTS NOTES

- 1. Specifications apply for sinewave input, AC + DC coupling, 1 power line cycle, digital filter off, following 55 minute warm-up.
- 3. For 1% to 5% of range below 750V range, and for 1% to 7% of 750V range, add 0.01% to range uncertainty. For inputs from 200kHz to 2MHz, specifications apply above 10% of range
- 4. Add 0.001% of reading × (V_{IN}/100V)² additional uncertainty above 100V rms.
- 5. Typical values

OHMS

TWO-WIRE AND FOUR-WIRE OHMS (2W and 4W Ohms Functions)13

			Default	Current ¹	RESISTANCE ACCURACY ⁵ ±(ppm of reading + ppm of range)					
Range	Full Scale	Resolution	Resolution	Source	24 Hours ⁶	90 Days ⁷	1 Year ⁷	2 Years ⁷		
20 Ω	21.000000	$1 \mu\Omega$	10 μΩ	9.2 mA	29 + 7	52 + 7	72 + 7	110 + 7		
200 Ω	210.00000	$10 \mu\Omega$	$100 \mu\Omega$	0.98 mA	24 + 7	36 + 7	56 + 7	90 + 7		
$2 k\Omega$	2100.0000	$100 \mu\Omega$	$1~\mathrm{m}\Omega$	0.98 mA	22 + 4	33 + 4	50 + 4	80 + 4.5		
20 kΩ	21.000000	$1~\text{m}\Omega$	$10~\mathrm{m}\Omega$	89 μΑ	19 + 4	32 + 4	50 + 4	80 + 4.5		
200 kΩ	210.00000	$10~\mathrm{m}\Omega$	$100~\mathrm{m}\Omega$	7 μA	20 + 4.5	72 + 4.5	90 + 4.5	130 + 5		
$2\mathrm{M}\Omega^{4}$	2.1000000	$100~\mathrm{m}\Omega$	1 Ω	770 nA	50 + 4.5	110 + 4.5	160 + 4.5	230 + 5		
$20\mathrm{M}\Omega^{4}$	21.000000	1 Ω	10 Ω	70 nA	160 + 4.5	560 + 4.5	900 + 4.5	1100 + 5		
$200\text{M}\Omega^{4}$	210.00000	10 Ω	100 Ω	4.4 nA	3000 + 100	10000 +100	20000 + 100	30000 + 100		
1 GO 4	1.0500000	100 O	1 kO	44 n4	9000 + 100	20000 +100	40000 + 100	60000 ± 100		

OHMS NOTES

- 1. Current source is typically ±9% absolute accuracy.
- 4. For 2-wire mode.
- 5. Specifications are for 1 power line cycle, 10 reading digital filter, Auto Zero on, 4-wire mode, offset compensation on (for 20Ω to $20k\Omega$ ranges).
- For T_{CAL} ±1°C, following 55 minute warm-up. T_{CAL} is ambient temperature at calibration (23°C at the factory).
- For T_{CAL} ±5°C, following 55-minute warm-up. Specifications include traceability to US NIST.
- 13. When measuring resistance of inductive loads, the inductance of that load must be 10mH or less.

DC AMPS

DCI INPUT CHARACTERISTICS AND ACCURACY⁴

				Maximum	Accuracy ¹ ±(ppm of reading + ppm of rang			
Range	Full Scale	Resolution	Default Resolution	Burden Voltage ⁶	24 Hours ²	90 Days³	1 Year³	2 Years ³
200 μΑ	210.00000	10 pA	100 pA	0.25 V	63 + 25	300 + 25	500 + 25	1350 + 25
2 mA	2.1000000	100 pA	1 nA	0.31 V	64 + 20	300 + 20	400 + 20	750 + 20
20 mA	21.000000	1 nA	10 nA	0.4 V	65 + 20	300 + 20	400 + 20	750 + 20
200 mA	210.00000	10 nA	100 nA	0.5 V	96 + 20	300 + 20	500 + 20	750 + 20
2 A	2.1000000	100 nA	1μ A	1.5 V	500 + 20	600 + 20	900 + 20	1350 + 20

DC AMPS NOTES

- 1. Specifications are for 1 power line cycle, Auto Zero on, 10 reading
- 2. For $T_{CAL} \pm 1^{\circ}C$, following 55 minute warm-up.
- For T_{CAL} ±5°C, following 55 minute warm-up. Specifications include traceability to US NIST.
- 4. Add 50 ppm of range for current above 0.5A for self heating.
- 6. Actual maximum voltage burden = (maximum voltage burden) × (I_{MEASURED}/I_{FULL SCALE}).

7½-Digit High Performance Multimeter 8½-Digit High Performance Multimeter

2001 Condensed Specifications (continued)

AC AMPS

ACI ACCURACY^{1, 2}

90 Days, 1 Year or 2 Years, $T_{CAL}\,\pm5^{\circ}C,$ for 5% to 100% of range, $\pm(\%$ of reading + % of range)

RANGE	20Hz- 50Hz	50Hz- 200Hz	200Hz- 1kHz	1kHz- 10kHz	10kHz- 30kHz³	30kHz- 50kHz³	50kHz- 100kHz³
200 μΑ	0.35 + 0.015	0.2 + 0.015	0.4 + 0.015	0.5 + 0.015			
2 mA	0.3 + 0.015	0.15 + 0.015	0.12 + 0.015	0.12 + 0.015	0.25 + 0.015	0.3 + 0.015	0.5 + 0.015
20 mA	0.3 + 0.015	0.15 + 0.015	0.12 + 0.015	0.12 + 0.015	0.25 + 0.015	0.3 + 0.015	0.5 + 0.015
200 mA	0.3 + 0.015	0.15 + 0.015	0.12 + 0.015	0.15 + 0.015	0.5 + 0.015	1 + 0.015	3 + 0.015
2 A	0.35 + 0.015	0.2 + 0.015	0.3 + 0.015	0.45 + 0.015	1.5 + 0.015	4 + 0.015	

AC AMPS NOTES

- Specifications apply for sinewave input, AC+DC coupling, 1 power line cycle, digital filter off, following 55 minute warm-up.
- Add 0.005% of range uncertainty for current above 0.5A rms for selfheating.
- 3. Typical values

FREQUENCY COUNTER

AC VOLTAGE INPUT: 1Hz-15MHz. ACCURACY: ±(0.03% of reading).

DC IN-CIRCUIT CURRENT

TYPICAL RANGES: Current: 100μ A to 12A. Trace Resistance: 1mΩ to 10Ω typical.

ACCURACY: $\pm (5\% + 2 \text{ counts})$. For 1 power line cycle, Auto Zero on, 10 reading digital filter, $T_{CAL} \pm 5^{\circ}$, after being properly zeroed. 90 days, 1 year or 2 years.

TEMPERATURE

Built-in linearization for J, K, N, T, E, R, S, B thermocouple types to ITS-90 and 100Ω platinum RTDs DIN 43760, IPTS-68, or ITS-90.

GENERAL

POWER: Voltage: 90–134V and 180–250V, universal self-selecting. Frequency: 50Hz, 60Hz, or 400Hz self-identifying. Consumption: <55VA.</p>

ENVIRONMENTAL: Operating Temperature: 0° to 50° C. Storage Temperature: -40° to 70° C. Humidity: 80% R.H., 0° to 35° C, per MIL-T-28800E¹ Para 4.5.5.1.2.

PHYSICAL: Case Dimensions: 90mm high × 214mm wide × 369mm deep (3½ in. × 8½ in. × 14½ in.). Net Weight: <4.2kg (<9.2 lbs.). Shipping Weight: <9.1kg (<20 lbs.).

STANDARDS

EMI/RFI: Conforms to VDE 0871B (per Vfg 1046/1984), IEC 801-2. Meets FCC part 15 Class B, CISPR-22 (EN55022).

Safety: Conforms to IEC348, CAN/CSA-C22.2. No. 231, MIL-T-28800E¹. Designed to UL1244.

Note 1: For MIL-T-28800E, applies to Type III, Class 5, Style E.

For complete specifications, refer to the 2001 Technical Data book

2002 Condensed Specifications

DC VOLTS

DCV INPUT CHARACTERISTICS AND ACCURACY

Enhanced Accuracy¹ - 10PLC, DFILT 10

Range	Full Scale	Resolution	Input Resistance	Transfer ¹²	24 Hours ²	90 Days³	1 Year³	2 Years ³
200 mV 4	±210.000000	1 nV	>100 GΩ	0.4 + 1.5	3.5 + 3	15 + 8	19 + 9	23 + 10
2 V ⁴	±2.10000000	10 nV	>100 GΩ	0.2 + 0.15	1.2 + 0.3	6 + 0.8	10 + 0.9	14 + 1
20 V	±21.0000000	100 nV	>100 GΩ	0.1 + 0.05	1.2 + 0.1	6 + 0.15	10 + 0.15	14 + 0.15
200 V	±210.000000	$1 \mu V$	10 MΩ ±1%	0.5 + 0.08	5 + 0.4	14 + 2	22 + 2	30 + 2
1000 V 13	±1100.00000	$10 \mu V$	$10~\mathrm{M}\Omega$ ±1%	1 + 0.05	5 + 0.08	14 + 0.4	22 + 0.4	30 + 0.4

Normal Accuracy¹⁴ - 1PLC, DFILT off

Relative Accuracy ±(ppm of reading + ppm of range)

Relative Accuracy \pm (ppm of reading + ppm of range)

			Input				
Range	Full Scale	Resolution	Resistance	24 Hours ²	90 Days ³	1 Year ³	2 Years ³
200 mV ⁴	±210.00000	10 nV	>100 GΩ	3.5 + 6	15 + 11	19 + 12	23 + 13
2 V ⁴	±2.1000000	100 nV	>100 GΩ	1.2 + 0.6	6 + 1.1	10 + 1.2	14 + 1.3
20 V	±21.000000	$1 \mu V$	>100 GΩ	3.2 + 0.35	8 + 0.4	12 + 0.4	16 + 0.4
200 V	±210.00000	$10 \mu V$	10 MΩ ±1%	5 + 1.2	14 + 2.8	22 + 2.8	30 + 2.8
1000 V 13	±1100.0000	100 μV	10 MΩ ±1%	5 + 0.4	14 + 0.7	22 + 0.7	30 + 0.7
1000 V 15	±1100.0000	100 μν	10 MS2 ±1%	5 + 0.4	14 + 0./	22 + 0./	30 + 0./

DC VOLTS NOTES

- Specifications are for 10 power line cycles, synchronous autozero, 10-reading repeat digital filter, autorange off, except as noted.
- For T_{CAL} ±1°C, following 4-hour warm-up. T_{CAL} is ambient temperature
 at calibration (23°C at the factory). Add 0.5ppm of reading uncertainty
 if the unit is power cycled during this interval.
- 3. For T_{CAL} ±5°C, following 4-hour warm-up.
- 4. Care must be taken to minimize thermal offsets due to operator cables
- 12. Specifications apply for 20-reading repeat digital filter, T_{REF} ±0.5°C (T_{REF} is the initial ambient temperature), and for measurements within 10% of the initial measurement value and within 10 minutes of the initial measurement time.
- 13. Add 20ppm \times (V_{IN}/1000V)² additional uncertainty for inputs above 200V, except in transfer accuracy specifications.
- Specifications are for 1 power line cycle, normal autozero, digital filter off, autorange off.

AC VOLTS Normal Mode RMS¹

90 Days, 1 Year or 2 Years, ±2°C from last AC self-cal, for 1% to 100% of range³ ±(% of reading + % of range)

Range		20-50Hz	50-100Hz	0.1-2kHz	2–10kHz	10-30kHz	30-50kHz	50–100kHz	100-200kHz	0.2-1MHz	1-2MHz
200 n	ηV	0.25 + 0.015	0.07 + 0.015	0.02 + 0.01	0.02 + 0.01	0.025 + 0.01	0.05 + 0.01	0.3 + 0.015	0.75 + 0.025	2 + 0.1	5 + 0.2
2	V	0.25 + 0.015	0.07 + 0.015	0.02 + 0.01	0.02 + 0.01	0.025 + 0.01	0.05 + 0.01	0.3 + 0.015	0.75 + 0.025	2 + 0.1	5 + 0.2
20	V	0.25 + 0.015	0.07 + 0.015	0.03 + 0.015	0.04 + 0.015	0.05 + 0.015	0.07 + 0.015	0.3 + 0.015	0.75 + 0.025	4 + 0.2	$7 + 0.2^{5}$
200	V^{i}	0.25 + 0.015	0.07 + 0.015	0.03 + 0.015	0.04 + 0.015	0.05 + 0.015	0.07 + 0.015	0.3 + 0.015	$0.75 + 0.025^5$	$4 + 0.2^5$	
750	V ⁴	0.25 + 0.015	0.1 + 0.015	0.05 + 0.015	0.06 + 0.015	0.08 + 0.015	$0.1 + 0.015^{5}$	$0.5 + 0.015^5$			

AC VOLTS NOTES

- Specifications apply for sinewave input, AC + DC coupling, 1 power line cycle, autozero on, digital filter off, following 55-minute warm-up.
- For 1% to 5% of range below 750V range, and for 1% to 7% of 750V range, add 0.01% of range uncertainty. For inputs from 200kHz to 2MHz, specifications apply above 10% of range.
- 4. Add 0.001% of reading \times (V_{IN}/100V)² additional uncertainty above 100V rms.
- 5. Typical values.

7½-Digit High Performance Multimeter 8½-Digit High Performance Multimeter

2002 Condensed Specifications (continued)

OHMS

TWO-WIRE AND FOUR-WIRE OHMS

1110 1111		C WINE OIL	Current ¹	Relative Accuracy ⁵ ±(ppm of reading + ppm of range)						
Range	Full Scale	Resolution	Source	Transfer ¹⁴	24 Hours ⁶	90 Days ⁷	1 Year ⁷	2 Years ⁷		
20 Ω	21.000000	100 nΩ	7.2 mA	2.5 + 3	5 + 4.5	15 + 6	17 + 6	20 + 6		
200 Ω	210.00000	$1 \mu\Omega$	960 μΑ	2.5 + 2	5 + 3	15 + 4	17 + 4	20 + 4		
2 kΩ	2100.0000	$10 \mu\Omega$	960 μΑ	1.3 + 0.2	2.5 + 0.3	7 + 0.4	9 + 0.4	11 + 0.4		
20 kΩ	21.000000	$100 \mu\Omega$	96 μΑ	1.3 + 0.2	2.5 + 0.3	7 + 0.4	9 + 0.4	11 + 0.4		
200 kΩ	210.00000	$1~\mathrm{m}\Omega$	9.6 μΑ	2.5 + 0.4	5.5 + 0.5	29 + 0.8	35 + 0.9	40 + 1		
$2 M\Omega$	2.1000000	$10~\mathrm{m}\Omega$	1.9 μΑ	5 + 0.2	12 + 0.3	53 + 0.5	65 + 0.5	75 + 0.5		
$20\mathrm{M}\Omega^{4}$	21.000000	$100~\mathrm{m}\Omega$	$1.4 \mu A^{13}$	15 + 0.1	50 + 0.2	175 + 0.6	250 + 0.6	300 + 0.6		
$200\mathrm{M}\Omega^{4}$	210.00000	1 Ω	$1.4 \mu A^{13}$	50 + 0.5	150 + 1	500 + 3	550 + 3	600 + 3		
$1 \mathrm{G}\Omega^{4}$	1.0500000	10 Ω	$1.4 \mu A^{13}$	250 + 2.5	750 + 5	2000 + 15	2050 + 15	2100 + 15		

OHMS NOTES

- 1. Current source has an absolute accuracy of ±5%
- 4. For 2-wire mode.
- Specifications are for 10 power line cycles, 10-reading repeat digital filter, synchronous autozero, autorange off, 4-wire mode, offset compensation on (for 20Ω to 20kΩ ranges), except as noted.
- For T_{CAL} ±1°C, following 4-hour warm-up. T_{CAL} is ambient temperature at calibration (23°C at the factory).
- 7. For $T_{CAL} \pm 5^{\circ}C$, following 4-hour warm-up.
- 13. Current source is paralleled with a $10 \text{M}\Omega$ resistance.
- 14. Specifications apply for 20-reading repeat digital filter, $T_{REF} \pm 0.5^{\circ}C$ (T_{REF} is the initial ambient temperature), and for measurements withi 10% of the initial measurement value and within 10 minutes of the initial measurement time

DC AMPS

DCI INPUT CHARACTERISTICS AND ACCURACY

			Maximum	Relative Accuracy ¹ ±(ppm of reading + ppm of range)			
Range	Full Scale	Resolution	Burden Voltage ⁶	24 Hours ²	90 Days ³	1 Year ³	2 Years ³
200 μΑ	210.00000	10 pA	0.25 V	50 + 6	275 + 25	350 + 25	500 + 25
2 mA	2.1000000	100 pA	0.3 V	50 + 5	275 + 20	350 + 20	500 + 20
20 mA	21.000000	1 nA	0.35 V	50 + 5	275 + 20	350 + 20	500 + 20
200 mA	210.00000	10 nA	0.35 V	75 + 5	300 + 20	375 + 20	525 + 20
2 A	2.1000000	100 nA	1.1 V	350 + 5	600 + 20	750 + 20	1000 + 20

DC AMPS NOTES

- 1. Specifications are for 1 power line cycle, autozero on, 10-reading repeat digital filter.
- For T_{CAL} ±1°C, following 55-minute warm-up. T_{CAL} is ambient temperature at calibration (23°C at the factory).
- 3. For T_{CAL} ±5°C, following 55-minute warm-up.
- 6. Actual maximum burden voltage = (maximum burden voltage) \times (I $_{\rm MEASURED}$ /I $_{\rm FULL\ SCALE}$).

AC AMPS

ACI Accuracy^{1, 2}

90 Days, 1 Year or 2 Years, T_{CAL} ±5°C, for 5% to 100% of range, ±(% of reading + % of range)

Range	20Hz- 50Hz	50Hz- 200Hz	200Hz- 1kHz	1kHz- 10kHz	10kHz- 30kHz³	30kHz- 50kHz³	50kHz- 100kHz³
200 μΑ	0.35 + 0.015	0.2 + 0.015	0.4 + 0.015	0.5 + 0.015			
2 mA	0.3 + 0.015	0.15 + 0.015	0.12 + 0.015	0.12 + 0.015	0.25 + 0.015	0.3 + 0.015	0.5 + 0.015
20 mA	0.3 + 0.015	0.15 + 0.015	0.12 + 0.015	0.12 + 0.015	0.25 + 0.015	0.3 + 0.015	0.5 + 0.015
200 mA	0.3 + 0.015	0.15 + 0.015	0.12 + 0.015	0.15 + 0.015	0.5 + 0.015	1 + 0.015	3 + 0.015
2 A	0.35 + 0.015	0.2 + 0.015	0.3 + 0.015	0.45 + 0.015	1.5 + 0.015	4 + 0.015	

AC AMPS NOTES

- 1 Specifications apply for sinewave input, AC+DC coupling, 1 power line cycle, autozero on, digital filter off, following 55-minute warm-up.
- 2 Add 0.005% of range uncertainty for current above 0.5A rms for self-heating.
- Typical values.

FREQUENCY COUNTER

AC VOLTAGE INPUT: 1Hz-15 MHz.

ACCURACY: ±(0.03% of reading).

DC IN-CIRCUIT CURRENT

TYPICAL RANGES: Current: $100\mu\text{A}$ to 12A. Trace Resistance: $1\text{m}\Omega$ to 10Ω .

ACCURACY: \pm (5% + 500 μ A). For 1 power line cycle, autozero on, 10-reading digital filter, T_{CAL} \pm 5°C, 90 days, 1 year or 2 years.

TEMPERATURE

Built-in linearization for J, K, N, T, E, R, S, B thermocouple types to ITS-90 and 100Ω platinum RTDs DIN 43760, IPTS-68, ITS-90, and SPRTs to ITS-90.

GENERAL

POWER: Voltage: 90–134V and 180–250V, universal self-selecting. Frequency: 50Hz, 60Hz, or 400Hz self-identifying at power-up. Consumption: <55VA.

ENVIRONMENTAL: Operating Temperature: 0° to 50° C. Storage Temperature: -40° to 70° C. Humidity: 80% R.H., 0° to 35° C, per MIL-T-28800E¹ Para 4.5.5.1.2.

PHYSICAL: Case Dimensions: 90mm high \times 214mm wide \times 369mm deep ($3\frac{1}{2}$ in. \times 8 $\frac{1}{2}$ in. \times 14 $\frac{1}{2}$ in.). Net Weight: \times 4.2kg (\times 9.2 lbs.). Shipping Weight: \times 9.1kg (\times 20 lbs.).

STANDARDS

EMI/RFI: Conforms to VDE 0871B (per Vfg 1046/1984), IEC 801-2. Meets FCC part 15 Class B, CISPR-22 (EN55022).

Safety: Conforms to IEC348, CAN/CSA-C22.2. No. 231, MIL-T-28800E¹. Designed to UL1244.

Note 1: For MIL-T-28800E, applies to Type III, Class 5, Style E.

